欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    圆锥曲线解题技巧教案整理后分享.doc

    • 资源ID:14966664       资源大小:1.52MB        全文页数:16页
    • 资源格式: DOC        下载积分:4
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要4
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆锥曲线解题技巧教案整理后分享.doc

    文档供参考,可复制、编制,期待您的好评与关注! 椭圆一、知识表格项目内容第一定义平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫椭圆。第二定义平面内到定点与到定直线的距离之比为常数的点的轨迹叫椭圆。图形标准方程几 何 性 质范围顶点与长短轴的长焦点焦距准线方程焦半径左下焦准距离心率(越小,椭圆越近似于圆)准线间距对称性椭圆都是关于轴成轴对称,关于原点成中心对称通径焦点三角形椭圆上一点与椭圆的两个焦点组成的三角形,其周长为,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形椭圆的一焦点与过另一焦点的弦组成的三角形,其周长为。参数方程为参数)为参数)注意:1、椭圆按向量平移后的方程为:或,平移不改变点与点之间的相对位置关系(即椭圆的焦准距等距离不变)和离心率。2、弦长公式:已知直线:与曲线交于两点,则或3、中点弦问题的方法:方程组法,代点作差法。两种方法总体都体现高而不求的数学思想。双曲线项目内容第一定义平面内与两个定点的距离之差等于常数(小于)的点的轨迹叫双曲线。第二定义平面内到定点与到定直线的距离之比为常数的点的轨迹叫双曲线。图形标准方程几 何 性 质范围顶点与实虚轴的长焦点焦距准线方程焦半径当在右支上时左当在左支上时左当在上支上时下当在下支上时下渐近线方程焦准距离心率(越小,双曲线开口越小),等轴双曲线的准线间距对称性双曲线都是关于轴成轴对称,关于原点成中心对称通径焦点三角形双曲线上一点与双曲线的两个焦点组成的三角形,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形双曲线的一焦点与过另一焦点的弦组成的三角形。参数方程为参数)为参数)项目内容定义平面内到定点的距离等于到定直线距离的点的轨迹叫抛物线。图形标准方程几 何 性 质范围开口方向向右向左向上向下焦准距顶点坐标坐标原点(0,0)焦点坐标准线方程对称轴轴轴轴轴离心率通径长焦半径抛物线一、焦点弦的结论:(针对抛物线:其中),为过焦点的弦,则1、焦点弦长公式:2、通径是焦点弦中最短的弦其长为3、,4、以焦点弦为直径的圆与抛物线的准线相切5、已知、在准线上的射影分别为、,则三点、共线,同时、三点也共线6、已知、在准线上的射影分别为、,则7、二、顶点直角三角形:直角顶点在抛物线顶点的三角形与其对称轴交于一个定点,反之,过定点的弦所对的顶点角为直角。三、从抛物线的焦点出发的光线经抛物线反射后与抛物线的对称轴平行。圆锥曲线概念、方法、题型、及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与|FF|不可忽视。若|FF|,则轨迹是以F,F为端点的两条射线,若|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如方程表示的曲线是_(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_(答2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时1()。方程表示椭圆的充要条件是什么?(ABC0,且A,B,C同号,AB)。如(1)已知方程表示椭圆,则的取值范围为_(答:); (2)若,且,则的最大值是_,的最小值是_(答:)(2)双曲线:焦点在轴上: =1,焦点在轴上:1()。方程表示双曲线的充要条件是什么?(ABC0,且A,B异号)。如设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_(答:)(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是_(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,在双曲线中,最大,。4.圆锥曲线的几何性质:(1)椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线; 离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。如(1)若椭圆的离心率,则的值是_(答:3或);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为_(答:)(2)双曲线(以()为例):范围:或;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;准线:两条准线; 离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;两条渐近线:。如 (1)双曲线的渐近线方程是,则该双曲线的离心率等于_(答:或); (2)双曲线的离心率为,则=(答:4或); (3)设双曲线(a>0,b>0)中,离心率e,2,则两条渐近线夹角(锐角或直角)的取值范围是_(答:);(4) 已知F1、F2为双曲线的左焦点,顶点为A1、A2, 是双曲线上任意一点,则分别以线段PF1、A1A2为直径的两圆一定( )A相交 B相切 C相离 D以上情况均有可能(3)抛物线(以为例):范围:;焦点:一个焦点,其中的几何意义是:焦点到准线的距离;对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);准线:一条准线; 离心率:,抛物线。如设,则抛物线的焦点坐标为_(答:);5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内6直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_(答:(-,-1)); (2)直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+); (3)过双曲线的右焦点直线交双曲线于A、B两点,若AB4,则这样的直线有_条(答:3);(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线1外一点的直线与双曲线只有一个公共点的情况如下:P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点作直线与抛物线只有一个公共点,这样的直线有_(答:2); (2)过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_(答:); (3)过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有_条答:3); (4)对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_(答:相离); (5)过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_(答:1); (6)设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为_(填大于、小于或等于) (答:等于); (7)求椭圆上的点到直线的最短距离(答:);(8)直线与双曲线交于、两点。当为何值时,、分别在双曲线的两支上?当为何值时,以AB为直径的圆过坐标原点?(答:;);7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_(答:);(2)已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于_;(3)若该抛物线上的点到焦点的距离是4,则点的坐标为_(答:);(4)点P在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标为_(答:);(5)抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为_(答:2);(6)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_(答:);8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题: ,当即为短轴端点时,的最大值为bc;对于双曲线。 如 (1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为_(答:6);(2)设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为 (答:);(3)椭圆的焦点为F1、F2,点P为椭圆上的动点,当·<0时,点P的横坐标的取值范围是(答:);(4)双曲线的虚轴长为4,离心率e,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A、B两点,且是与等差中项,则_(答:);(5)已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,求该双曲线的标准方程(答:);9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB为焦点弦, M为准线与x轴的交点,则AMFBMF;(3)设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PAPB;(4)若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共线。10、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。如(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_(答:8); (2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ABC重心的横坐标为_(答:3);(3)已知抛物线的焦点恰为双曲线的右焦点,且倾斜角为的直线交抛物线于,两点,则的值为( )A. B. C. D. 11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); (4)抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 (答:)特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!12你了解下列结论吗?(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_(答:)(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为; (5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为AB,则;(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点13动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:直接法:直接利用条件建立之间的关系;如已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程(答:或);待定系数法:已知所求曲线的类型,求曲线方程先根据条件设出所求曲线的方程,再由条件确定其待定系数。如线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,则此抛物线方程为(答:);定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1)由动点P向圆作两条切线PA、PB,切点分别为A、B,APB=600,则动点P的轨迹方程为(答:);(2)点M与点F(4,0)的距离比它到直线的距离小于1,则点M的轨迹方程是_ (答:);(3) 一动圆与两圆M:和N:都外切,则动圆圆心的轨迹为(答:双曲线的一支);代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程;如动点P是抛物线上任一点,定点为,点M分所成的比为2,则M的轨迹方程为_(答:);参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。如(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MNAB,垂足为N,在OM上取点,使,求点的轨迹。(答:);(2)若点在圆上运动,则点的轨迹方程是_(答:);(3)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是_(答:);注意:如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。如已知椭圆的左、右焦点分别是F1(c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(1)设为点P的横坐标,证明;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使F1MF2的面积S=若存在,求F1MF2的正切值;若不存在,请说明理由. (答:(1)略;(2);(3)当时不存在;当时存在,此时F1MF22)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.14、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知与的中点三点共线;(5) 给出以下情形之一:;存在实数;若存在实数,等于已知三点共线.(6) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,(8)给出,等于已知是的平分线/(9)在平行四边形中,给出,等于已知是菱形;(10) 在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16) 在中,给出,等于已知是中边的中线; (1)已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为(C)(A) (B) (C) (D)(2)已知是x,y轴正方向的单位向量,设=, =,且满足·=|.求点P(x,y)的轨迹. 解: ,化简得,故点P的轨迹是以(,0)为焦点以为准线的抛物线(3)已知A,B为抛物线x2=2py(p>0)上异于原点的两点,点C坐标为(0,2p)(1)求证:A,B,C三点共线; (2)若()且试求点M的轨迹方程。(1)证明:设,由得,又,即A,B,C三点共线。(2)由(1)知直线AB过定点C,又由及()知OMAB,垂足为M,所以点M的轨迹为以OC为直径的圆,除去坐标原点。即点M的轨迹方程为x2+(y-p)2=p2(x¹0,y¹0)。15.圆锥曲线中线段的最值问题:例1、(1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为_ (2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。分析:(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。(2)B在抛物线内,如图,作QRl交于R,则当B、Q、R三点共线时距离和最小。 解:(1)(2,)(2)()点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。例2、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。(1)的最小值为 (2)的最小值为 分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。解:(1)4- 设另一焦点为,则(-1,0)连A,P 当P是A的延长线与椭圆的交点时, 取得最小值为4-。(2)3 作出右准线l,作PHl交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,当A、P、H三点共线时,其和最小,最小值为16 / 16

    注意事项

    本文(圆锥曲线解题技巧教案整理后分享.doc)为本站会员(doc321)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开