欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    江苏专用2019版高考物理大一轮复习第13单元热学学案20180510222.doc

    • 资源ID:1563116       资源大小:2.41MB        全文页数:39页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏专用2019版高考物理大一轮复习第13单元热学学案20180510222.doc

    第13单元 热学高考热点统计要求2014年2015年2016年2017年分子动理论33(1)33(1)33(1)固体、液体和气体33(1)33(1)33(1)33(1)33(1)33(1)33(2)33(1)气体实验定律、状态方程3333(2)33(2)33(2)33333333(2)3333热力学定律和能量守恒定律33(1)33(1)33(1)3333(2)3333考情分析1.本单元的主要内容是分子动理论的基本观点、固体和液体的基本性质、气体实验定律和理想气体状态方程及热力学定律,分子动理论、阿伏伽德罗常数的应用、气体实验定律及热力学第一定律的应用是高考命题的热点.2.扩散和布朗运动现象、阿伏伽德罗常数、分子力和分子势能、分子平均动能和温度、气体压强的微观解释、油膜法测分子直径、晶体与液晶、液体的表面张力等是本单元的基础知识,气体实验定律、理想气体状态方程与热力学定律是本单元的重点知识,应用气体实验定律、热力学第一定律的解题方法是教学重点.第32讲分子动理论内能用油膜法估测分子的大小一、分子动理论1.物体是由大量分子组成的(1)分子直径大小的数量级为 m. (2)一般分子质量的数量级为 kg. (3)阿伏伽德罗常数NA:1 mol的任何物质所含的分子数,NA=mol-1. 2.分子永不停息地做无规则热运动(1)扩散现象:相互接触的物体的分子或原子彼此进入对方的现象.温度越,扩散越快. (2)布朗运动:在显微镜下看到的悬浮在液体中的微小颗粒的永不停息的无规则运动.布朗运动反映了的无规则运动,颗粒越,运动越明显;温度越,运动越剧烈. 3.分子力(1)分子间同时存在着和,实际表现的分子力是它们的. (2)引力和斥力都随着距离的增大而,但分子间距离变化相等时斥力比引力变化得. (3)分子间的作用力随分子间距离r变化的关系如图32-1所示:当r<r0时,表现为;当r=r0时,分子力为;当r>r0时,表现为;当r>10r0时,分子力变得十分微弱,可忽略不计. 图32-1二、物体的内能1.分子的平均动能:物体内所有分子动能的平均值.是分子平均动能的标志,物体温度升高,分子热运动的增大. 2.分子势能:与分子有关.分子势能的大小随分子间距离的变化曲线如图32-2所示(规定分子间距离无穷远时分子势能为零). 图32-23.物体的内能:物体中所有分子的热运动与的总和.物体的内能跟物体的、及物体的都有关系. 三、用油膜法估测分子的大小将油酸滴在水面上,让油酸尽可能散开,可认为油酸在水面上形成油膜,如果把分子看作,单层分子油膜的厚度就可以看作油酸分子的直径,如图32-3所示,测出油酸的体积V和油膜的面积S,就可以算出分子的直径d,则d=. 图32-3【思维辨析】(1)布朗运动是液体分子的无规则运动.()(2)温度越高,布朗运动越剧烈.()(3)分子间的引力和斥力都随分子间距的增大而增大.()(4)-33 =240 K.()(5)分子动能指的是由于分子定向移动具有的能.()(6)当分子力表现为引力时,分子势能随分子间距离的增大而增大.()(7)内能相同的物体,它们的分子平均动能一定相同.()【思维拓展】分子的体积如何表示? 考点一阿伏伽德罗常数的应用宏观量与微观量的转换桥梁作为宏观量的摩尔质量Mmol、摩尔体积Vmol、密度与作为微观量的分子直径d、分子质量m、分子体积V0都可通过阿伏伽德罗常数联系起来.如图32-4所示.图32-4(1)一个分子的质量:m=.(2)一个分子所占的体积:V0=(估算固体、液体分子的体积或气体分子平均占有的空间).(3)1 mol物体的体积:Vmol=.(4)质量为M的物体中所含的分子数:n=NA. (5)体积为V的物体中所含的分子数:n=NA.考向一液体、固体分子模型1 2017·江苏卷 科学家可以运用无规则运动的规律来研究生物蛋白分子.资料显示,某种蛋白的摩尔质量为66 kg/mol,其分子可视为半径为3×10-9 m的球,已知阿伏伽德罗常数为6.0×1023 mol-1.请估算该蛋白的密度.(计算结果保留一位有效数字) 建模点拨固体、液体分子一个一个紧密排列,可将分子看成球体或立方体,如图32-5所示,分子间距等于小球的直径或立方体的棱长,所以d=(球体模型)或d=(立方体模型).图32-5考向二气体分子模型2 已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为NA,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为,空气分子之间的平均距离为.  建模点拨气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间.如图32-6所示,此时每个分子占有的空间视为棱长为d的立方体,所以d=.图32-6考点二分子动理论的应用考向一布朗运动与分子热运动项目布朗运动分子热运动活动主体固体小颗粒分子区别是固体小颗粒的运动,能通过光学显微镜直接观察到是分子的运动,分子不论大小都做热运动,热运动不能通过光学显微镜直接观察到共同点都是永不停息地无规则运动,都随温度的升高而变得更加剧烈,都是肉眼所不能看见的联系布朗运动是小颗粒受到周围做热运动的分子撞击作用不平衡而引起的,它是分子做无规则运动的反映3 (多选)2016·江苏涟水中学质检 关于布朗运动,下列说法不正确的是()A.布朗运动就是液体分子的无规则运动B.布朗运动就是悬浮的固体微粒分子的无规则运动C.气体分子的运动是布朗运动D.液体中的悬浮微粒越大,布朗运动就越不明显E.布朗运动是由液体分子从各个方向对悬浮微粒撞击作用的不平衡引起的考向二分子间的作用力与分子势能4 (多选)2017·山西晋城二模 将一个分子P固定在O点,另一个分子Q从图中的A点由静止释放,两分子之间的作用力与间距关系的图像如图32-7所示,则下列说法正确的是()图32-7A.分子Q由A运动到C的过程中,先加速再减速B.分子Q在C点时分子势能最小C.分子Q在C点时加速度大小为零D.分子Q由A点释放后运动到C点左侧的过程中,加速度先增大后减小再增大E.该图能表示固、液、气三种状态下分子力随分子间距变化的规律 方法技巧(1)分子势能在平衡位置有最小值,无论分子间距离如何变化,靠近平衡位置,分子势能减小,反之增大.(2)判断分子势能的变化有两种方法看分子力的做功情况.直接由分子势能与分子间距离的关系图线判断,但要注意其和分子力与分子间距离的关系图线的区别.考向三物体的内能1.物体的内能与机械能的比较内能机械能定义物体中所有分子热运动动能与分子势能的总和物体的动能、重力势能和弹性势能的统称决定因素与物体的温度、体积、物态和分子数有关跟宏观运动状态、参考系和零势能点的选取有关量值任何物体都有内能可以为零测量无法测量可测量本质微观分子的运动和相互作用的结果宏观物体的运动和相互作用的结果运动形式热运动机械运动联系在一定条件下可以相互转化,能的总量守恒2.内能和热量的比较内能热量区别是状态量,状态确定,系统的内能随之确定.一个物体在不同的状态下有不同的内能是过程量,它表示由于热传递而引起的内能变化过程中转移的能量联系在只有热传递改变物体内能的情况下,物体内能的改变量在数值上等于物体吸收或放出的热量5 (多选)关于物体的内能,下列说法不正确的是()A.温度相等的1 kg和100 g的水内能相同B.物体内能增加,一定要从外界吸收热量C.热量只能从内能多的物体转移到内能少的物体D.在相同物态下,同一物体温度降低,它的内能会减少E.物体运动时的内能不一定比静止时的内能大式题 (多选)2017·太原二模 如图32-8所示,甲分子固定在坐标原点O,乙分子位于x轴上,两分子之间的相互作用力的合力F与两分子间距离x的关系如图中曲线所示,F>0表现为斥力,F<0表现为引力,a、b、c、d为x轴上四个特定的位置,现把乙分子从a处由静止释放,则()图32-8A.乙分子从a到b做加速运动,由b到c做减速运动B.乙分子从a到c做加速运动,经过c点时速度最大C.乙分子由a到c的过程中,两分子组成的系统的分子势能一直减少D.乙分子由a到d的过程中,两分子组成的系统的分子势能一直减少E.乙分子位于c点时,两分子组成的系统的分子势能最小考点三用油膜法估测分子的大小(1)油膜体积的测定积聚法:由于一滴纯油酸中含有的分子数仍很大,形成的单层分子所占面积太大,不便于测量,故实验中先把油酸溶于酒精中稀释,测定其浓度,再测出1 mL油酸酒精溶液的滴数,取一滴用于实验,最后计算出一滴油酸酒精溶液中含有的纯油酸的体积作为油膜的体积.(2)油膜面积的测定:如图32-9所示,将画有油酸薄膜轮廓的有机玻璃板取下放在坐标格纸上,以边长为1 cm的方格为单位,数出轮廓内正方形的格数(不足半格的舍去,超过半格的计为1格),计算出油膜的面积S.图32-96 2017·江苏联考 “用油膜法估测分子大小”的实验步骤如下:向体积为V1的纯油酸中加入酒精,直到油酸酒精溶液总体积为V2;用注射器吸取上述溶液,一滴一滴地滴入小量筒,当滴入n滴时体积为V0;先往边长为3040 cm的浅盘里倒入2 cm深的水;用注射器往水面上滴一滴上述溶液,等油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描出油酸薄膜的轮廓;将描有油酸薄膜轮廓的玻璃板,放在画有许多边长为a的小正方形的坐标纸上,读出轮廓范围内正方形的总数为N.上述过程中遗漏的步骤是 ;油酸分子直径的表达式是d=. 式题 2017·郑州质检 在“用油膜法估测分子大小”实验中,将一滴油酸酒精溶液滴入事先洒有均匀痱子粉的水槽中,待油膜充分散开后,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图32-10所示.坐标纸上正方形小方格的边长为1 cm,该油膜的面积是m2;已知油酸酒精溶液中油酸浓度为0.2%,400滴油酸酒精溶液滴入量筒后的体积是1.2 mL,则油酸分子的直径为m.(结果均保留两位有效数字) 图32-10 规律总结1.注意事项(1)油酸在水面上形成油膜时先扩散后收缩,要在稳定后再画轮廓.(2)在有机玻璃板上描绘油酸薄膜轮廓时动作要轻而迅速,视线要始终与玻璃板垂直.2.误差分析(1)油酸酒精溶液配制后长时间放置,溶液的浓度容易改变,会给实验带来较大误差;(2)利用小格子数计算轮廓面积时,轮廓的不规则性容易带来计算误差;(3)测量量筒内溶液增加1 mL的滴数时,产生误差;(4)油膜形状的画线误差.第33讲固体、液体、气体的性质热力学定律一、固体和液体1.固体可以分为晶体和两种,晶体又分为单晶体和. 2.晶体的微观结构:晶体的形状和物理性质与非晶体不同,晶体中原子(或分子、离子)按照一定的规则排列,具有空间上的性. 3.液体的表面张力:液体的表面张力使液面具有的趋势,表面张力跟液面相切,跟这部分液面的分界线垂直. 4.液晶:具有液体的性,具有晶体的光学各向性. 二、气体1.气体的状态参量(1)压强:气体压强是大量分子对器壁撞击的宏观表现,其决定因素有和单位体积内的数. (2)体积:气体分子所能到达空间的体积,即气体所充满的容器的容积.(3)温度:宏观上温度表示物体的冷热程度,微观上温度是的标志,热力学温度与摄氏温度的关系为T=(t+) K. 2.气体分子运动的特点(1)气体分子之间的距离大约是分子直径的倍,气体分子之间的相互作用力十分微弱,可忽略不计. (2)大量分子的热运动速率分布表现为“”的统计规律. (3)温度一定时,某种气体分子速率分布是确定的,平均速率是确定的.温度升高时,气体分子的增大,但并非每个分子的速率都增大. 3.气体实验定律定律项目玻意耳定律查理定律盖吕萨克定律内容一定质量的某种气体,在温度不变的情况下,压强与体积成比 一定质量的某种气体,在体积不变的情况下,压强与热力学温度成比 一定质量的某种气体,在压强不变的情况下,体积与热力学温度成比 表达式   图像4.理想气体状态方程(1)理想气体:把在任何温度、任何压强下都遵从的气体称为理想气体.在压强不太大、温度不太低时,实际气体可以看作理想气体.理想气体的分子间除碰撞外不考虑其他作用,一定质量的某种理想气体的内能仅由决定. (2)理想气体状态方程:(质量一定的理想气体). 三、热力学定律1.热力学第一定律:一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么外界对物体所做的功W加上物体从外界吸收的热量Q等于物体的增量.表达式为U=. 2.热力学第二定律(1)内容:不可能使热量由温物体传递到温物体,而不引起其他变化;不可能从热源吸收热量并把它全部用来对外,而不引起其他变化. (2)微观意义:一切自发过程总是沿着分子热运动的无序性的方向进行. 3.热力学第三定律:热力学零度不可能达到.四、物体的内能1.能量守恒定律:能量既不会,也不会,它只能从一种形式转化为另一种形式,或者从转移到,在转化或转移的过程中,能量的总量. 2.永动机:第一类永动机是不可能制成的,因为它违反了;第二类永动机也是不可能制成的,因为它违反了. 【思维辨析】(1)单晶体的所有物理性质都是各向异性的.()(2)液晶是液体和晶体的混合物.()(3)水蒸气达到饱和时,水蒸气的压强不再变化,这时水不再蒸发和凝结.()(4)压强极大的气体不遵从气体实验定律.()(5)做功和热传递的实质是相同的.()(6)绝热过程中,外界压缩气体做功20 J,气体的内能一定减少.()(7)物体吸收热量,同时对外做功,内能可能不变.()(8)热机中,燃气的内能可以全部变为机械能而不引起其他变化.()【思维拓展】试推导理想气体压强公式,并说明影响气体压强的因素.假设有一个容积为V的容器,容器内所装气体分子的总数为N,容器内单位体积分子数为n,其中n=,每个气体分子质量为m,我们在这个容器的内壁附近作一个小的正立方体,小立方体与容器内壁相接触的面积为S,令小立方体的边长为l=vt,其中v为气体分子平均速率,t是我们所取的一小段考查的时间间隔.小立方体内气体分子的总数为N',N'=nSl=nSvt,在t内,这个小立方体内的气体分子有六分之一都将与接触面发生碰撞. 考点一固体和液体的性质考向一固体的性质1 (多选)2015·全国卷 下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变 规律总结(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.考向二液体的性质2 (多选)下列说法正确的是()A.把一枚针轻放在水面上,它会浮在水面.这是因为水表面存在表面张力B.水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能,这是因为油脂使水的表面张力增大C.在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形,这是表面张力作用的结果D.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开,这是由于水膜具有表面张力的缘故 规律总结(1)表面张力的形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.(2)表面张力的方向:和液面相切,垂直于这部分液面的分界线.(3)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.考向三饱和汽压和湿度的理解3 (多选)关于饱和汽压和相对湿度,下列说法中正确的是()A.温度相同的不同饱和汽的饱和汽压都相同B.温度升高时,饱和汽压增大C.在相对湿度相同的情况下,夏天比冬天的绝对湿度大D.饱和汽压和相对湿度都与体积无关E.水蒸气的实际压强越大,人感觉越潮湿 规律总结(1)饱和汽压跟液体的种类有关,在相同的温度下,不同液体的饱和汽压一般是不同的.(2)饱和汽压跟温度有关,饱和汽压随温度的升高而增大.(3)饱和汽压跟体积无关,在温度不变的情况下,饱和汽压不随体积的变化而变化.考点二气体实验定律和气体压强的微观解释1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1=p2V2或pV=C(常数).(2)查理定律(等容变化):=C(常数).(3)盖吕萨克定律(等压变化):=C(常数).2.利用气体实验定律解决问题的基本思路考向一玻意耳定律4 2017·全国卷 一种测量稀薄气体压强的仪器如图33-1甲所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图乙所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为,重力加速度大小为g.求:(1)待测气体的压强;(2)该仪器能够测量的最大压强.图33-1考向二查理定律5 2017·山西三模 如图33-3所示,横截面积为S的热水杯盖扣在水平桌面上,开始时内部封闭气体的温度为27 ,压强为大气压强p0.当封闭气体温度上升至30 时,水杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为p0,温度仍为30 .再经过一段时间,由于室温的降低,内部气体温度降至21 .整个过程中封闭气体均可视为理想气体.求:(1)当封闭气体温度上升至30 且水杯盖未被顶起时的压强p1;(2)当封闭气体温度下降至21 时,竖直向上提起杯盖所需的最小力Fmin.图33-2考向三盖吕萨克定律6 2017·全国卷 一热气球体积为V,内部充有温度为Ta的热空气,气球外冷空气的温度为Tb.已知空气在1个大气压、温度T0时的密度为0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g.(1)求该热气球所受浮力的大小;(2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m0,求充气后它还能托起的最大质量.考点三气体实验定律的图像问题(1)利用垂直于坐标轴的线作辅助线去分析同质量,不同温度的两条等温线,不同体积的两条等容线,不同压强的两条等压线的关系.例如:在图33-3甲中,虚线为等容线,A、B分别是虚线与T2、T1两条等温线的交点,可以认为从B状态通过等容升压到A状态,温度必然升高,所以T2>T1.图33-3又如图乙所示,A、B两点的温度相等,从B状态到A状态压强增大,体积一定减小,所以V2<V1.(2)关于一定质量的气体的不同图像的比较过程类别图线特点示例等温过程p-VpV=CT(其中C为恒量),即p、V之积越大的等温线温度越高,线离原点越远p-p=CT,斜率k=CT,即斜率越大,温度越高等容过程p-Tp=T,斜率k=,即斜率越大,体积越小等压过程V-TV=T,斜率k=,即斜率越大,压强越小7 2017·兰州一模 一定质量的理想气体体积V与热力学温度T的关系图像如图33-4所示,气体在状态A时的压强pA=p0,温度TA=T0,线段AB与V轴平行,BC的延长线过原点.求:(1)气体在状态B时的压强pB;(2)气体在状态C时的压强pC和温度TC.图33-4式题 2017·上海静安质检 一定质量的气体经历一系列状态变化,其p-图线如图33-5所示,变化顺序为abcda,图中ab线段延长线过坐标原点,cd线段与P轴垂直,da线段与轴垂直.气体在此状态变化过程中()图33-5A.ab,压强减小、温度不变、体积增大B.bc,压强增大、温度降低、体积减小C.cd,压强不变、温度升高、体积减小D.da,压强减小、温度升高、体积不变 方法总结气体状态变化的图像的应用技巧(1)明确点、线的物理意义:求解气体状态变化的图像问题,应当明确图像上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图像上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.(2)明确斜率的物理意义:在V-T图像(或p-T图像)中,比较两个状态的压强(或体积)大小,可以比较表示这两个状态的点与原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.考点四理想气体状态方程的求解1.理想气体(1)宏观上,理想气体是指在任何条件下始终遵循气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.2.状态方程:=C.3.应用状态方程解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始、末状态的参量p1、V1、T1及p2、V2、T2;(3)由状态方程列式求解;(4)讨论结果的合理性.8 2017·福建厦门一检 如图33-6所示,内壁光滑的水平放置气缸被两个活塞分成A、B、C三部分,两活塞间用轻杆连接,活塞厚度不计,在E、F两处设有限制装置,使左边活塞只能在E、F之间运动,E、F之间的容积为0.1V0.开始时左边活塞在E处,A部分的容积为V0,A部分内气体的压强为0.9p0(p0为大气压强),温度为297 K;B部分的容积为1.1V0,B部分内气体的压强为p0,温度恒为297 K;C部分内为真空.现缓慢加热A部分内气体,直至温度升为399.3 K.求:(1)活塞刚离开E处时的温度TE;(2)A部分内气体最后的压强p.图33-6式题 2017·南昌十校二模 如图33-7所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银柱,两段空气柱被封闭在左、右两侧的竖直管中.开启上部连通左、右水银的阀门A,当温度为300 K时,平衡时水银柱的位置如图所示,h1=h2=5 cm,L1=50 cm,大气压强为75 cmHg.(1)求右管内空气柱的长度L2;(2)关闭阀门A,当温度升至405 K时,求左侧竖直管内空气柱的长度L3.(大气压强保持不变)图33-7 方法总结对于两部分气体的问题,一定要找好两部分气体之间的关系,比如压强关系、体积关系等,分别找出两部分气体的初、末状态的压强、体积和温度,根据理想气体状态方程列式求解.考点五热力学定律的理解与应用考向一热力学第一定律的理解和应用1.改变内能的两种方式的比较做功热传递区别内能变化情况外界对物体做功,物体的内能增加;物体对外界做功,物体的内能减少物体吸收热量,内能增加;物体放出热量,内能减少从运动形式上看宏观的机械运动向物体的微观分子热运动的转化通过分子之间的相互作用,使同一物体的不同部分或不同物体间的分子热运动发生变化,是内能的转移从能量的角度看其他形式的能与内能相互转化的过程不同物体之间或同一物体不同部分之间内能的转移能的性质变化情况能的性质发生了变化能的性质不变联系做一定量的功或传递一定量的热量在改变内能的效果上是相同的2.温度、内能、热量、功的比较含义特点温度表示物体的冷热程度,是物体分子平均动能大小的标志,它是大量分子热运动的集体表现,对个别分子来说,温度没有意义状态量内能物体内所有分子动能和势能的总和,它是由大量分子的热运动和分子的相对位置所决定的热量是热传递过程中内能的改变量,热量用来量度热传递过程中内能转移的多少过程量功做功过程是机械能或其他形式的能和内能之间的转化过程3.对公式U=Q+W符号的规定符号WQU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少4.几种特殊情况(1)若过程是绝热的,则Q=0,W=U,外界对物体做的功等于物体内能的增加量.(2)若过程中不做功,即W=0,则Q=U,物体吸收的热量等于物体内能的增加量.(3)若过程的初、末状态物体的内能不变,即U=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.9 (多选)2017·全国卷 如图33-8所示,用隔板将一绝热气缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个气缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()图33-8A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变式题 (多选)2017·全国卷 如图33-9所示,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到状态a.下列说法正确的是()图33-9A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量E.在过程ca中气体从外界吸收热量 规律总结(1)做功情况看气体的体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.(2)如果研究对象是理想气体,由于理想气体没有分子势能,所以当它的内能变化时,主要体现在分子平均动能的变化上,从宏观上看就是温度发生了变化.考向二热力学第二定律的理解和应用1.对热力学第二定律的理解(1)“自发地”说明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.10 (多选)关于热力学定律,下列说法正确的是()A.不可能从单一热源吸收热量,并把它全部用来做功B.可能从单一热源吸收热量,并把它全部用来做功C.不可能使热量从低温物体传向高温物体D.机械能转变为内能的实际宏观过程是不可逆过程E.与热现象有关的变化过程都具有方向性 规律总结热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,例如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,例如气体的等温膨胀过程.式题 (多选)关于第二类永动机,下列说法正确的是()A.能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫作第二类永动机B.第二类永动机违反了能量守恒定律,所以不可能制成C.第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能D.第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能在不引起其他变化的同时全部转化为机械能E.第二类永动机不违反能量守恒定律,但违反热力学第二定律 规律总结两类永动机的比较第一类永动机第二类永动机不消耗能量却可以源源不断地对外做功的机器从单一热源吸热,全部用来对外做功而不引起其他变化的机器违背能量守恒定律,不可能实现不违背能量守恒定律,但违背热力学第二定律,不可能实现第34讲选修3-3计算题型突破考点一变质量气体计算题分析变质量问题时,可以通过巧妙地选择合适的研究对象,使这类问题转化为一定质量的气体问题,用相关规律求解.1.充气问题向球、轮胎等封闭容器中充气是一个典型的变质量的气体问题.只要选择容器内原有气体和即将打入的气体作为研究对象,就可把充气过程中的气体质量变化的问题转化为定质量问题.2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,可把抽气过程中的气体质量变化的问题转化为定质量问题.3.分装问题将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,可以把大容器中的气体和多个小容器中的气体看成整体来作为研究对象,可将变质量问题转化为定质量问题.4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用相关方程求解.如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化,再用相关方程求解即可.1 容积为5×10-3 m3的容器内盛有理想气体,若用最大容积为0.1×10-3 m3的活塞抽气筒抽气,在温度不变的情况下抽气10次,容器内剩余气体的压强是最初压强的几分之几?式题 2017·广东惠州模拟 如图34-1所示,喷洒农药用的某种喷雾器,其药液桶的总容积为14 L,装入药液后,封闭在药液上方的空气体积为2 L,气压为1 atm.打气筒活塞每次可以打进气压为1 atm、体积为0.2 L的空气.(不考虑环境温度的变化)(1)要使药液上方的气体压强增大到5 atm,应打气多少次?(2)如果药液上方的气体压强达到5 atm时停止打气,并开始向外喷药,那么当喷雾器不能再向外喷药时,筒内剩下的药液还有多少升?图34-1考点二“气缸类”计算题“气缸类”计算题解题的关键是压强的计算,对于活塞和气缸封闭的气体压强的计算,可根据情况灵活地隔离活塞或气缸为研究对象,受力分析时一定要找到研究对象跟哪些气体接触,接触气体对它都有力的作用,气体的压力一定与接触面垂直并指向受力物体.2 2017·山西联考 如图34-2所示,上端开口的光滑圆柱形绝热气缸竖直放置,质量m=5 kg,横截面积S=50 cm2的活塞将一定质量的理想气体封闭在气缸内,在气缸内距缸底某处设有体积可忽略的卡环a、b,使活塞只能向上滑动,开始时活塞搁在a、b上,缸内气体的压强等于大气压强,温度为300 K.现通过内部电热丝缓慢加热气缸内气体,直至活塞恰好离开 a、b.已知大气压强p0=1.0×105 Pa,g取10 m/s2.(1)求加热后气缸内气体的温度;(2)继续加热气缸内的气体,使活塞缓慢上升H=0.1 m(活塞未滑出气缸),若气体的内能的变化量为18 J,则此过程中气体是吸热还是放热?传递的热量是多少?图34-2式题 2017·全国卷 如图34-3所示,容积均为V的气缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给气缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1.已知室温为27 ,气缸导热.(1)打开K2,求稳定时活塞上方气体的体积和压强;(2)接着打开K3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20 ,求此时活塞下方气体的压强.图34-3考点三“液柱类”计算题对于水和水银封闭气体压强的计算,我们经常用参考液片法,选取假想的液体薄片(自

    注意事项

    本文(江苏专用2019版高考物理大一轮复习第13单元热学学案20180510222.doc)为本站会员(无敌斩)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开