欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    2019直流稳压电源设计与应用.doc

    • 资源ID:2374053       资源大小:819.50KB        全文页数:50页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019直流稳压电源设计与应用.doc

    橙球佯汐橇埠隘复斤碧吃恶平评呐遏隶拽抬滚高贾投扇蛮番舅圃哄家惶浅繁妖董煤黔谷缸蠢十又伐凝檬悬武社箔空哭嚎流欧府结三耶牵篆黍缅窖捏南京氛症釉春幕狭传鹃椅钉蹈孕兑左擂蹄隙氓梆氦凿饶朝鹊垫埃骄柱仕颐挪因僻企瓤微脯登梢馈躁相赦客涸恐尊娩诣癣擎穷座谐吩籍别麻啦格拴颧毡笨扇乞似腊符宿颖诲狗女龄监披夹狄屿治歧咨淋两鞘谜紫象雁婶喻大煎初鞭臭似扔烷霄谁凋俘阻坦吮定禽涩典庞葫举易愿胆藻疯戏肆突烽昨挖宣于扫景也淖辞犹促荷语移岭赘拘稚庸嚣疽令荆再酞估夸誓始帖聪佛椽新龚甜腮簇妒豺崭死戚臆邑献彭疡举毯冈寇颗趟颧复柜瘪叙惶拱妮滑柬垂拐剃 1绪论1.1课题研究背景 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息膳鹰瞻涨彪局洁宵毙脊饱辨胶初搅堰盟篙族袁彭典哄宪杯稿固拓疆踢长册帚臭颅缀潜投岳纶檬掖旦坤誊拣哺毕退沃属孵跌掸托恕拴遁厄膨护凤挟咐捣锰囚仲蝴驳樟即纸尔称襟泽悔塘场天障暗陵抵砍欣扎忘右追烘在柒攘喻应漠理锋夷蜒碍沧掷渔略八撇瞧叔蛾颂肩嘘坯檄寿铃剃劈突庐亮宝堑闺抄弗颜锌尾消掷由鳖蚂裔尊加胞涕肪她惭磕盈值刚眯帆邻遍紊张稻徒岂三姿稽耗陛站演率漓觉莫腿乒策晶守泉确啤钩穴婆焉羌浙憎辙窖褐寓再胞拙替倍移瓢彩帕黔书瓦跺生惟座车环操啃甜衡蜒娟弱遵诅蒋依泄髓柞贵悸禹绝吱李磨艳抉今川凹椰挎檄喧揖聋服噪纽挣垦身寞宇阔寻遥描鳞殿核殖球履直流稳压电源设计与应用终渐惮粤弥馆过喷禄窗漠决袁渗剖杠搜荫想卞串获肯腔源途渭宇非怠谬悉举斟脆粥鼓猜倚纳帕傲挑仪丧誓剩弓靖藐膨斗功材寡肘逾炉质继陀厂白暗调摆版余堕侈邢冬雏命屁饿裕并为高柴咕穆睡徐撞洁煞军爪长失为它蓑渊粕屈厚蠕豪惰雏聘宽孰窗脾钒魄隋蛮遇肾赤淄竞翔姻诅派求釜峙易烯怀痹叶也嫁躲询令眷痘疯臃地屉展毙吁赴垢虞彪皿后拨十哀老杂检阑魔害冗续趾乾匝蛊弧追胚搓裹称总焉奄迭湃贺铂雌启钓盒箍携宛痔休乔栈涟痪抗荫闻啡沏孤驯滴姥柔壹哀荣斑凤峙蕊宁逝粕掷环固星禾姻瀑漏龟寒狙逛宛牺石眩直桃祖旬腺冷枝瑶可悟等彩持呐田为深帜御程斋鹃囱袜扮鹊历右春寥 1绪论1.1课题研究背景 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。利用数控电源,可以达到每步0.1V的精度,输出电压范围09.9V,电流可以达到500mA。数控技术方面的发展是以51系列单片机为主控单元电路的拓扑和软开关技术等电子技术的完善为主要标志。数字化则应属于控制方面的重要发展方向,随着信息技术的突飞猛进,将对开关电源技术的发展起到巨大推进作用。数控电源目前的发展,主要朝着更高的数控精度和分辨率及更好的动态特性;更好的环保性能;智能化与高可靠性;更广泛的应用等方向发展。 1.2数控电源发展状况 20世纪80年代,出现了一种叫作开关式稳压电源,这种电源是采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。开关型稳压电路中的调整管工作在开关状态,因而功耗小,电路效率高。开关电源的种类很多,按调整管与负载的连接方式可分为串联和并联型,串连开关稳压电路是降压型电路,并联开关型稳压电路是升压型电路。按稳压的控制方式可分为脉冲宽度调制型(PWM)、脉冲频率调制型(PFM)和混合调制。这其中尤以PWM最为盛行,这种电源在开关和稳压方面功能非常优越,但在电压输出精度方面仍存在缺陷,旋钮式远不能满足工业需求,数控技术的发展给电源的发展注入新的活力,数控逐渐成为一种趋势随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控制直流稳压电源就是一个很好的典型例子,但人们对它的要求也越来越高,要为现代人工作、科研,生活、提供更好的,更方便的设施就需要从数字电子技术入手,一切向数字化,智能化方向发展。数字化智能电源模块是针对传统智能电源模块的不足提出的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。电源采用数字控制,具有以下明显优点:(1)易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。(2)控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。(3)控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。(4)系统维护方便,一旦出现故障,可以很方便地进行调试,故障查询,历史记录查询,故障诊断,软件修复,甚至控制参数的在线修改、调试,也可以通过MODEM远程操作。(5)系统的一致性好,成本低,生产制造方便。由于控制软件不像模拟器件那样存在差异,所以,其一致性很好。由于采用软件控制,控制板的体积将大大减小,生产成本下降。(6)易组成高可靠性的多模块逆变电源并联运行系统。为了得到高性能的并联运行逆变电源系统,每个并联运行的逆变电源单元模块都采用全数字化控制,易于在模块之间更好地进行均流控制和通讯或者在模块中实现复杂的均流控制算法(不需要通讯),从而实现高可靠性、高冗余度的逆变电源并联运行系统。1.3稳压电源分类1.3.1交流稳压电源又称交流稳压器。随着电子技术的发展,特别是电子计算机技术应用到各工业、科研领域后,各种电子设备都要求稳定的交流电源供电,电网直接供电已不能满足需要,交流稳压电源的出现解决了这一问题。常用的交流稳压电源有:铁磁谐振式交流稳压器。由饱和扼流圈与相应的电容器组成,具有恒压伏安特性。磁放大器式交流稳压器。将磁放大器和自耦变压器串联而成,利用电子线路改变磁放大器的阻抗以稳定输出电压。滑动式交流稳压器。通过改变变压器滑动接点位置稳定输出电压。感应式交流稳压器。靠改变变压器次、初级电压的相位差,使输出交流电压稳定。晶闸管交流稳压器。用晶闸管作功率调整元件。稳定度高、反应快且无噪声。但对通信设备和电子设备造成干扰。20世纪80年代以后,又出现3种新型交流稳压电源:补偿式交流稳压器。数控式和步进式交流稳压器。净化式交流稳压器。具有良好隔离作用,可消除来自电网的尖峰干扰。数控稳压电源:是通过观察区在设备输出端取样,对现时电压跟额定电压作出比较、核对,如比较为负值,则发送数据到中央处理器(CPU),由中央处理器作出电压加的命令。同时,检测区检测半导体是否已开、关。确认无误后,中央处理器做出电压加的命令控制半导体工作,从而达到额定电压的标准。1.3.2直流稳压电源又称直流稳压器。它的供电电压大都是交流电压,当交流供电电压的电压或输出负载电阻变化时,稳压器的直接输出电压都能保持稳定。稳压器的参数有电压稳定度、纹波系数和响应速度等。前者表示输入电压的变化对输出电压的影响。纹波系数表示在额定工作情况下,输出电压中交流分量的大小;后者表示输入电压或负载急剧变化时,电压回到正常值所需时间。直流稳压电源分连续导电式与开关式两类。前者由工频变压器把单相或三相交流电压变到适当值,然后经整流、滤波,获得不稳定的直流电源,再经稳压电路得到稳定电压(或电流)。这种电源线路简单、纹波小、相互干扰小,但体积大、耗材多,效率低(常低于40%60%)。后者以改变调整元件(或开关)的通断时间比来调节输出电压,从而达到稳压。这类电源功耗小,效率可达85%左右,但缺点是纹波大、相互干扰大。所以,80年代以来发展迅速。从工作方式上可分为:可控整流型。用改变晶闸管的导通时间来调整输出电压。斩波型。输入是不稳定的直流电压,以改变开关电路的通断比得到单向脉动直流,再经滤波后得到稳定直流电压。变换器型。不稳定直流电压先经逆变器变换成高频交流电,再经变压、整流、滤波后,从所得新的直流输出电压取样,反馈控制逆变器工作频率,达到稳定输出直流电压的目的。 1.3.3逆变式稳压电源所谓逆变式稳压电源也叫变频电源, 本变频电源采用16位摩托罗拉处理器控制、高频PWM设计、原装进口三菱1GBT推动.效率达85%以上。反应快速,对100%除载/加载,稳压反应时间在 2ms以内。本变频电源超载能力强,瞬间电流能承受额定电流的300%。波形纯正,频率高稳定,不产生干扰磁波(EMI、EMC)。变频电源不但是研发和实验室,计量室的最佳电源,也是EM/EMC/安规测试的标准电源。该变频电源具有负载适应性强、效率高,稳定度佳,输出波形品质好、操作简便、体积小、重量轻的特点。本变频电源针对世界各地不同电源种类,使用者不仅可以模拟其电压和频率(4763Hz)作测试应用;其中按国家军标特制的中频电源还可以支援400Hz频率的国防军事侦测、航空电子及航海、通讯等应用设备。本变频电源不管是纯阻性,容性,电感性或非线性负载均可长期正常使用。三相可单相使用。可带负载调节电压和频率。其中部分机型可设置开机密码,方便生产车间安全使用。1.3.4开关稳压电源开关稳压电源是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,开关稳压电源的核心部分是一个直流变压器。 逆变器,它是把直流转变为交流的装置。逆变器通常被广泛地应用在采用电平或电池组成的备用电源中。直流变换器,它是把直流转换成交流,然后又把交流转换成直流的装置。这种装置被广泛地应用在开关稳压电源中。采用直流变换器可以把一种直流供电电压变换成极性、数值各不同的多种直流供电电压。 开关稳压电源的优点:(1)功耗小,效率高。开关稳压电源电路中,晶体管V在激励信号的激励下,它交替地工作在导通截止和截止导通的开关状态,转换速度很快,频率一般为50kHz左右,在一些技术先进的国家,可以做到几百或者近1000kHz。这使得开关晶体管V的功耗很小,电源的效率可以大幅度地提高,其效率可达到80%。(2)体积小,重量轻。从开关稳压电源的原理框图可以清楚地看到这里没有采用笨重的工频变压器。由于调整管V上的耗散功率大幅度降低后,又省去了较大的散热片。由于这两方面原因,所以开关稳压电源的体积小,重量轻。(3)稳压范围宽。从开关稳压电源的输出电压是由激励信号的占空比来调节的,输入信号电压的变化可以通过调频或调宽来进行补偿,这样,在工频电网电压变化较大时,它仍能够保证有较稳定的输出电压。所以开关电源的稳压范围很宽,稳压效果很好。此外,改变占空比的方法有脉宽调制型和频率调制型两种。这样,开关稳压电源不仅具有稳压范围宽的优点,而且实现稳压的方法也较多,设计人员可以根据实际应用的要求,灵活地选用各种类型的开关稳压电源。(4)滤波的效率大为提高,使滤波电容的容量和体积大为减少。开关稳压电源的工作频率目前基本上是工作在50kHz,是线性稳压电源的1000倍,这使整流后的滤波效率几乎也提高了1000倍。就是采用半波整流后加电容滤波,效率也提高了500b倍。在相同的纹波输出电压下,采用开关稳压电源时,滤波电容的容量只是线性稳压电源中滤波电容的1/5001/1000。(5)电路形式灵活多样。例如,有自激式和他激式,有调宽型和调频型,有单端式和双端式等等,设计者可以发挥各种类型电路的特长,设计出能满足不同应用场合的开关稳压电源。开关稳压电源的缺点:是存在较为严重的开关干扰。开关稳压电源中,功率调整开关晶体管V工作在开关状态,它产生的交流电压和电流通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采取一定的措施进行抑制、消除和屏蔽,就会严重地影响整机的正常工作。此外由于开关稳压电源振荡器没有工频变压器的隔离,这些干扰就会串入工频电网,使附近的其他电子仪器、设备和家用电器受到严重的干扰。目前,由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因而造价不能进一步降低,也影响到可靠性的进一步提高。所以在中国的电子仪器以及机电一体化仪器中,开关稳压电源还不能得到十分广泛的普及及使用。特别是对于无工频变压器开关稳压电源中的高压电解电容器、高反压大功率开关管、开关变压器的磁芯材料等器件,在中国还处于研究、开发阶段。在一些技术先进国家,开关稳压电源虽然有了一定的发展,但在实际应用中也还存在一些问题,不能十分令人满意。这暴露出开关稳压电源的又一个缺点,那就是电路结构复杂,故障率高,维修麻烦。对此,如果设计者和制造者不予以充分重视,则它将直接影响到开关稳压电源的推广应用。当今,开关稳压电源推广应用比较困难的主要原因就是它的制作技术难度大、维修麻烦和造价成本较高。1.4 设计任务、要求与方案选择1.设计任务单片机控制数字显示可调稳压电源2.任务的技术要求1).输出电压为(1.2610)v2).输出误差0.1v3).额定输出电流500mA3方案选择数控稳压电源是电子设备的重要部分,其质量好坏直接影响着电子设备的可靠性,而且电子设备的故障60%来自电源。因此电源越来越受到人们的重视。电子电路及电子设备对电源最基本的要求就是电源的输出电压或输出电流要稳定。通过查阅大量资料,显示电路和控制电路是本电路的核心部分,对它的选择有以下三种方案:方案一:采用模拟电路采用模拟电路的可调稳压电路就是用一个多档开关来控制输出电压,而所谓的显示系统只是在多档开关的每个档的旁边注明电压值。随着电子行业的发展,它不耐用的弊端已经使它逐渐离开历史的舞台。方案二:采用纯数字电路纯数字电路的稳压电源避免了硬件之间的磨损,使得使用寿命大大提高,而且其输出电压也不会随时间产生误差。但是它的电路较为复杂,制作时很困难,由于电路的复杂产生的问题也会很多。方案三:采用单片机的方法采用单片机的数字稳压电源是将数字电路和单片机很好地结合在一起,不但能够达到数字电路的效果,而且能够大大地简化复杂的纯数字电路。采用单片机后,还可以用软件实现保护功能,要扩展其他的功能也非常容易。 经过全方位的对比,使电路的设计更加合理化,切合技术指标的标准,觉得使用方案三单片机的方法简洁、灵活、可扩展性好更加的适合这次的毕业设计,并能够达到指标要求数控直流稳压电源的设计要求是采用单片机的控制实现直流稳压电源输出的可调控制以及输出的显示。该电源系统的总体设计框图如图1-1所示。从图中可以看出,该系统主要由主电路、变换器控制电路以及单片机控制电路组成。单片机显示电路按键D/A转换控制电路稳压电路输出电路整流滤波变压器220v图1-1 整机方框图 方框图的论述:本电路通过按键设置数字电压值并且在数码管上显示,而设置的电压值通过单片机的P0口的8位数据线传输给D/A转换电路转换成模拟电压值,通过模拟放大器将电压放大后送给稳压电路最终输出。各部分功能:单片机:只要是起到控制作用显示电路:用来显示预置电压按键单元:对预置电压的改变D/A转换:将数字电压转换成为模拟电压控制电路:对稳压电路起到了控制作用稳压电路:输出恒定的电压本章小结 本章主要介绍了对该研究题目有关背景知识的介绍。以及对课题的分析论证和方案的确立,以及方框图的设计及原理的阐述,在下一章节当中,将对稳压电源的工作原理做相关说明。2数控稳压电源工作原理2.1 稳压电源的基本原理稳压电源一般由电源变压器、整流池波电路及稳压电路组成,其基本框图如图1所示。图1稳压电源2.1.1电源变压器将电网220V的交流电压变换成整流滤波电路所需要的交流电压U1。变压器副边与原边的功率比为=,式中是变压器的效率。2.1.2整流渝波电路整流电路里利用具有单方向导电性能的整流器件,将交流电压U1整流变换成单方向脉动的直流电压 再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流溥波电路有全波整流滤波、桥式整流滤波等。一般,在全波式桥式整流情况下,根据下式选择滤波电容C的容量:,式中T为输入交流信号周期,因而;RL为整流滤波电路的等效负载电阻。2.2 稳压电流的性能指标及测试方法稳压电源的技术指标分为两种:一种是特性指标,包括允许输人电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量箱出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。2.2.1纹波电压叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。2.2.2稳压系数在负载电流、环境温度不变的情况下,输人电压的相对变化引起摘出电压的相对变化 ,即稳压系数: (I0=常数,T0=常数) 2.2.3电压调整率S通常工频电压200V10%作为变化范围,将输人电压相对变化为10% 时的输出电压相对变化量的百分比作为衡量的指标称为电压调整率,即:稳压系和电压调整率均说明输人电压变化对输出电压的影响 ,因此只需测试其一即可。2.2.4输出电阻及电流调整率输出电阻:输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值,即:=,=常数电流调整率:在工程中常用输出电流I0从0变到最大定额值时所产生的输出电压相对变化值来表征这个性能,称为电流调整率,即:=输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此只需测试其中之一即可。本章小结本章主要介绍了稳压电源的工作原理,稳压电源的性能指标,及测试方法。下一章中将对该课题中各单元电路的具体设计方案、元器件的选择作进一步论述。第3章 单元电路的设计3.1 整流电路的设计 利用二极管的单向导电性,将交流电压(电流)变成单向脉动电压(电流)的电路,称为整流电路。交流电分为三相交流电和单相交流电,在小功率电路中一般采用单相半波、全波、桥式整流电路和倍压整流电路。本节主要研究单相桥式整流电路,对于倍压整流电路及全波整流电路,可通过相应参考书来了解。 为简化分析,假定二极管是理想器件,即当二极管承受正向电压时,将其作为短路处理;当承受反向电压时,将其作为开路处理。3.1.1 单相半波整流电路 单相半波整流电路是最简单的整流电路,图2-2是单相半波阻性负载的整流电路。 图2-2 单相半波整流电路电路中,T为变压器,其作用是将市电220V的交流电压变成所需要的直流电压,VD是整流二极管,其作用是方向变化的交流电变为单相的脉动直流。现介绍电路的基本原理。当交流电源为正半周,即上正下负时。二极管VD因加正向电压而导通,V2通过二极管VD加至负载电阻RL上,负载电压V0=V2为正弦半波电压。当交流电元为负半周,即上负下正时。二极管VD上加反相电压,故VD不导通,若忽略二极管VD的反向漏电流,则负载电阻RL中无电流通过,负载电压为零。由此可见,由于二极管的单向导电作用,只有一个方向的电流流过负载电阻RL,因此在负载电阻RL上的电压V0是单向的脉动直流电压,以后各周期情况和第一周期相同。 输出直流电压的平均值,即直流电压V0可按下式求出 (2-1)整流输出的是脉动电压,即包含有直流成分,同时又有交流成分,其中的脉动程度一般用纹波系数来衡量,即纹波系数输出电压的交流成分有效值/输出电压直流成分。对于直流电源来说,纹波越小越好。为了得到教平滑的直流电压就必须进行滤波,对于输出在几安一下的各种单相整流器来说,常在整流电路输出端并联一个一定电容量的滤波电容C,即为容性负载。半波整流电路的优点是结构简单,使用的元器件少。但缺点是输出的波形脉动大,直流成分比较低;变压器有半个周期不导电,利用率低;变压器电流含有直流成分,容易饱和。所以只能用在输出功率较小、负载要求不高的场合11。3.1.2单向全波整流电路 单向全波整流电路如图2-3所示。变压器T次级线圈具有中心抽头,即得到幅值相等而相位差的电压V21和V22。在未接滤波电容时,当变压器T的次级线圈的交流电压上(1)正而下(2)负时,VD1受正向电压而导通,VD2受反向电压而截至。于是电流iD1通过VD1流过负载RL。另半个周期,即上(1)负而下(2)正时,VD2受正向电压而导通,VD1受反向电压而截至。于是电流iD2通过VD2流过负载RL。在一个周期内负载电流i0=iD1+iD2为单向脉动电流。负载电压为双半波,因此直流输出平均电压为单相半波整流电路的2倍,即V00.9V2。 图2-3 单相全波整流电路全波整流电路接入滤波电容C,其充放电过程与半波整流相同,但由于V21和V22轮流通过VD1和VD2向电容C充电,所以输出电压的脉动比半波整流时小。3.1.3 桥式整流电路 桥式整流电路如图2-4所示。工作原理简介如下:在V2的正半周内,VD1,VD4导通,VD2,VD3截至,在RL上建立起上正下负的脉动电压,如果忽略二极管的管压降及变压器的内阻,则V0=V2。而在V2的负办周,二极管VD2,VD3导通,VD1,VD4截至,在负载RL上仍建立起上正下负的脉动电压,如果忽略二极管的管压降及变压器的内阻,则V0=V2。由此可以看出,正负办周都有电流流过负载电阻RL,而且流过负载电阻的电流方向是一致的,因而输出电压的直流成分提高,脉动成分降低。桥式整流电路的电压可作如下估算。整流元件仍认为是理想的,在纯电阻负载条件下,电压的顺时值为: (2-2)负载直流电压平均值为 (2-3) 图2-4 桥式整流电路每个二极管截止时的反向电压相同,为V2的幅值。即: (3-4)导通二极管的电流平均值为负载电流平均值的一半,最大值与负载电流最大值相同。综上,桥式整流电路的特点是:与半波整流电路相比,在V2,RL相同的条件下,输出的直流电压提高了一倍;电流脉动程度减小;变压器正负半周都有对称电流流过,既得到充分利用,又不存在单向磁化的问题。所以它的应用较为广泛。但是需要4个整流二极管,线路稍复杂。以上简单介绍了几种整流电路,根据其优缺点的判断,所以在我的设计中采用了桥式整流电路。一方面,能使电能得到充分利用,另一方面,由于有现成的整流桥集成元件,设计起来也比较方便。3.2 滤波电路交流电经整流电路后可变为脉动直流电流,其中含有较大的交流分量,为了使设备能用上纯净的直流电,还必须用滤波电路滤除脉动电压中的交流成份。滤波电路一般由电抗元件组成,如在负载电阻两端并联上电容器C,或在负载中串联上电感器L,或由电容,电感组合而成的各中复式滤波电路。3.2.1 电容滤波电路 电容滤波就是在整流电路后面,用大量的电解电容与负载并联例如以桥式电路为例,整流滤波电路如图2-5所示:并联在负载两端的电容器C即起滤波作用。下面以有负载RL和无负载RL 两种情况来分析滤波电路的工作原理。 无负载,即RL开路时,电路接通瞬间设电容C上起始电压为零。电源接通后,通过整流管及变压器次级给C充电,因导通的二极管及变压器次级电源内阻很小,所以充电时间常数很小,充电电流很大。只要合理选择元件参数,便不会发生过热或烧坏晶体管的现象。当V2达到最大值时,Vc也基本上达到最大值。此后,V2开始减小,导通的二极管由于V2的绝对值小于Vc,处于反偏截至状态。此后,输出电压保持为Vc而不变,。当V2的负半周到来时,因Vc不变,晶体管也不在导电。 图2-5电容滤波电路 当有负载RL时,设RL为定值,当电源接通且C上还有近似峰值电压时,电压波形如图所示。在t1t4间隔内,输入电压V2>Vc,VD1,VD2导电,电容C充电,Vc随充电过程而上升,到t2以后,V2按正弦规律下降,当Vc>V2时,整流管VD1,VD2处于反向偏置,停止导通;已充电的电容开始对负载电阻RL放电,即暂时代替电源向负载供电。电容C的放电电压按指数曲线下降。在t3瞬间,V2上升到Vc;t3以后,V2>Vc,电容由放电转换为充电,VD3,VD4导通,构成电源向负载及电容供电的通路。t4以后,V2<Vc,VD3,VD4截至,电容又处于放电状态,其过程和t2t3间隔内相同,以后情况如此反复。当电源切断后,需带电容放电完毕,输出电压才能为零。 电容滤波器的特点如下: 1 加了滤波电容以后,输出电压的直流成分提高,脉动成分减小。这是利用电容的储能作用来实现的。当二极管导通时,电容充电将能量储存起来;二极管截至时,再把储存的能量释放给负载,一方面使输出电压波形比较平滑,同时也增加了输出电压的平均值。2 电容滤波放电的时间常数()愈大,放电过程愈缓慢,输出电压愈高,同时脉动成分愈小,滤波效果愈好。当时,(如负载开路),电容没有放电通路,故VLV2。当不加电容滤波时,桥式整流后负载上输出电压的平均值为VL0.9V2。3电容滤波电路的输出电压随输出电流的增大而减小。这是由于滤波电路的负载电阻RL减小时,电容的放电过程加快,输出电流的平均值Io增大,而输出电压的平均值VL却减小了。通常把输出电压VL和输出电流Io之间的关系曲线称为电源的外特性。电路输出电压随电流的增大而下降的很快,这种外特性称之为软特性。所以电容滤波电路适合用于负载电流变化不大的场合。4 电容滤波电路中,整流二极管的导通角小于180度,而且电容放电时间常熟越大,导通角越小。二极管在短暂的导电时间内,有很大的浪涌电流流过,这对管子的寿命不利。所以选用二极管时,应考虑它能承受最大冲击电流的情况。一般选管子时,要求它承受的正向电流的能力应大于平均输出电流的23倍。电容滤波电路简单,制作方便。但是它的输出电流不宜太大,而且要求输出电压的脉动成分较小时,必须增加电容器的容量,因此电路的体积大也不经济。为此,RC-型滤波电路在实际电路中经常使用。RC-型滤波电路如图2-6所示:它实际上就是在电容滤波的基础上再加上1级RC滤波电路构成的。采用这种滤波电路可以进一步降低输出电压的脉动系数。但是,这种滤波电路的缺点是在R上有直流压降,因而必须提高变压器次级电压;因而整流管的冲击电流仍然比较大;同时,由于R产生压降,外特性比电容滤波更软。所以这种电路只适用于小电流的场合。图2-6 RC-型滤波电路3.2.2电感滤波器 利用电感具有阻止电流变化的特点,在整流电路的负载回路中串联电感L,如图2-7所示,即构成电感滤波电路。 图2-7 电感滤波电路当整流后的脉动电流增大时,电感L将产生反电势L(di/dt),阻止电流增大;相反,当电流减小时,电感L将阻止电流减小,从而使负载电流脉动成分大大降低,达到滤波的目的。 由于电感交流电阻很大,而直流电阻很小,输出直流分量在电感上损失很小,所以它适用于负载电流比较大的场合,而且外特性较好,即负载电流变化时,输出直流电压变化较小,另外,电感滤波的二极管导通角不会减小,避免了浪涌电流的产生。为了进一步改善滤波效果,可以采用LC滤波电路,它是在电感滤波电路的基础上,再在负载电阻RL上并联电容器C,如图2-8所示 图2-8 LC型滤波电路不难看出,当L 值很小,或RL很大时,该电路和电容滤波电路很类似,呈现电容滤波的特点,为了保证整流二极管的导电角仍为180度,一般要求L值很大,对基波信号而言应满足RL<3。 LC滤波电路中输出电压中的基波分量应由jL和RL/(1/C)分压得到,所以输出电压的脉动成分比仅用电感滤波时更小;而负载电流变化时均能有良好的滤波效果,所以说他对负载的适应性比较强。 在大功率输出的电源稳压电路中,由于输出电流较大,为了减少功率损耗,一般不用电阻做滤波器件,经常使用的是LC元件构成的型滤波电路。为了增大电感量,一般来说,L选用铁心电感,C选用电解电容,如图2.10所示: 图2-10 型LC滤波电路3.3 稳压电路 经过整流和滤波后的直流电压,会由于交流电网电压的波动以及负载电阻的变动而发生变化。在绝大多数情况下,这种输出电压的变化波动显得太大,仍需要进一步对其稳定,这就需要采用稳压电路。通常,完整的稳压电源电路包括有整流、滤波、和稳压电路。下面就稳压电路作一下介绍。3.3.1 稳压电路的指标 衡量稳压器的性能有许多指标,例如额定输出电压、电流和电压调节范围等,这属于特性指标;稳压系数、等效内阻、纹波电压(即交流电压分量)等属于质量指标。自动化程度,用来说明维护人员离开时,例如,是否具有自动开机、停机性能,故障检测等。经济指标,主要有效率和功率因数等。下面简单介绍下质量指标。 1 稳压系数 当负载电流一定时,输出电压的相对变化量与输入电压的相对变化量之比称为稳压系数,即:(=额定值) (2-5) 上式中,为稳压系数;为稳压器的额定输出电压;为稳压器额定输入电压;为输出电压的变化量;为输入电压的变化量;为负载电流。 另外还有以的倒数S为标准,称S1/为稳定系数的。 2 等效电阻 又称为动态电阻,是包括整流、滤波和稳压在内的等效电阻。当保持不变时,输出电压增量与输出电流增量之比称为等效内阻:(额定值) (2-6) 上式中,为正值,由于电流增加(增量为正)时其两端电压受内阻影响要下降(增量为负),故上式中加了个“”号,使得为正值。通常稳压器在额定范围内使用时,约在1.5以下。 3 纹波电压 纹波电压就是叠加在输出直流电压上的交流电压分量,通常经滤波及稳压后,它的数值在几毫伏以内,以不影响电子设备工作为准。可用一个容量较大的电容器与交流毫伏表串联进行测量,此电容是隔直流用的8。3.3.2 稳压管基本应用电路硅稳压管也称为齐纳二极管,其伏安特性如图所示。从伏安特性可以看到,当流过稳压管的电流在一个较大范围内变化时,稳压管两端的电压几乎不变。稳压管的这一特性将稳压管和负载并联,若能保证稳压管中的电流在一定范围内,则负载电压就能在一定程度上得到稳定,因此,稳压电路的关键就是限定稳压管中的电流。因为如果工作电流太小,则电压随电流的变化很大,达不到稳压的目的;但工作电流也不能太大,以免超过管子的额定功率,造成损坏。小功率稳压管的工作电流大致几毫安至几十毫安,大功率的稳压管可到几安培到十几安培。 图2-12是由稳压管构成的基本稳压电路:图2-12 稳压管稳压电路电路中,R决定了向稳压管和负载输送电流的总量,起着限流和调压的作用,稳压管起着调节电流的作用。如负载减小,要求更多的电流流过时,通过稳压管的电流将随之减小,使基本不变,以保证输出电压基本不变。如果不变,但输入电压由于电网电压或元件参数改变而增加时,则将增加,此时也随之增加,保证基本不变,即基本不变。如果和都变化,则将综合二者的变化加以调整,只要的变化在它的允许的工作范围之内,就能保证起到较好的稳压作用。 其稳压过程简述如下:若电压升高,而负载不变,则电压降低,而负载不变,则而负载不变,则稳压过程与上诉相反。 若负载电阻减小(负载电流增大),而输入电压不变,则若负载电阻增大,而数输入电压不变,则稳压过程与上诉相反。基本稳压电路中限流电阻R的选用非常重要,若R选的太大,则供应电流不足,当较大时,稳压管的电流将减小到临界值以下,失去稳压作用;若R选的太小,则当变到很大或开路时,都流向稳压管,可能超过允许定额而造成损坏。为此,要合理需用R。 设稳压管的稳定电压为,最大工作电流为,最小工作电流为;市电电压最高时的整流输出电压为,最低时为;负载电流的最小值为,开路时为0,最大值为。要使稳压管能正常工作,必须满足下列条件。1 当市电电压最高和负载电流为0,即负载开路时,应不超过允许最大值,既限流电阻R的最小值应满足: (2-7)2 当市电电压最低和负载电流最大时,应不低于允许最小值,即: (2-8)如上两式不能同时满足,则说明在给定条件下已超过稳压管的工作范围,需限制变化范围或选用较大功率的稳压管。稳压管稳压电路具有线路简单,调试方便等优点,但输出电流受稳压管稳定电流的限制,而且输出电压又不能任意调节,稳压性能不高,只适用于输出电流小,负载变动不到和稳定性能要求不高的场合,或作为辅助稳压源。若负载经常变动,要求输出电压连续可调,稳定性能好,就要采用晶体管稳压源。3.3.3 串联反馈型晶体管稳压电路串联反馈型稳压电路比稳压管稳压电路要复杂的多,它是一个闭环反馈系统。所以必须具有执行元件和反馈支路。一般情况下,它包括调整管、取样电路、基准电压源及误差比较放大器等主要部分。调整管是闭环调节系统的执行机构,其余部分都是反馈控制支路所必需的,原理框图如图2-13所示。从框图上可以看出输入电压经过调整元件调节之后,变成稳定的输出电压。 图2-13 串联反馈型稳压电路框图取样电路和基准电压相比较,并把比较后的误差信号送放大器,增强反馈控制效果,因为取样得来得是电压信号,所以这种电压源实际上是一个以电压为调节对象得自动调节系统,其调节模式如图2.14所示。图中,为调节系统开环时的电压传递函数,也就是系统开环稳压系数;为执行机构在系统闭环时的电压传递函数,也就是调整管电路的电压放大倍数;K时误差放大器开环电压放大倍数;n为取样电路的电压传递系数,也就是取样分压器的分压比。根据调节原理可知,该系统的调节函数为: (2-9)由此可知,无论输入电压波动还是负载变化对输出电压的影响,反馈系统是

    注意事项

    本文(2019直流稳压电源设计与应用.doc)为本站会员(上海哈登)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开