欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    第八章真核基因的表达调控.doc

    • 资源ID:2718232       资源大小:6.34MB        全文页数:30页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第八章真核基因的表达调控.doc

    第八章 基因表达的调控(下)真核基因的表达调控本章主要内容一、总论二、真核生物的基因结构三、DNA水平上的调控四、转录水平上的调控-反式作用因子五、真核基因转录调控的主要模式真核基因组结构特点n 真核基因组结构庞大 3×109bpn 单顺反子n 基因不连续性 断裂基因(interrupted gene)、内含子(intron)、 外显子(exon)n 非编码区较多 多于编码序列(9:1)n 含有大量重复序列原核生物基因组结构特点n 基因组很小,大多只有一条染色体n 结构简炼n 存在转录单元多顺反子n 有重叠基因一、总 论1、原核与真核生物表达调控的差别(1)原核生物主要是通过转录来调控,开启或关闭某些基因的表达来适应环境条件的变化(营养水平)。(2)真核生物表达调控,在特定时间和特定的细胞中激活特定的基因,从而 实现“预定”的、有序的、不可逆的分化、发育过程,并使生物的组织和器官保持正常功能。2、真核生物基因表达的特点:(1) 真核基因表达以正性调控为主;(2) 真核生物中转录和翻译分别在细胞核与细胞质中进行;(3) 真核基因表达的调控可以在多个水平上进行: DNA水平的调控、转录水平调控、转录后水平调控、翻译水平调控、蛋白质加工水平的调控;(4)不同组织和细胞类型合成不同的一套蛋白 质,具有细胞特异性或组织特异性;(5)真核基因的转录与染色质的结构变化相关;(6)主要包括瞬时调控或称可逆调控(对某底物 或激素水平的反应)和发育调控或称不可逆 调控,决定了真核细胞生长、分化、发育的全部进程。3、不同水平上的真核基因表达调控二、真核细胞的基因结构1、真核基因组的一般构造特点 一条成熟的mRNA链只能翻译出一条多肽链,不存在操纵子。 DNA都与组蛋白和大量非组蛋白相结合,只有小部分裸露。 高等真核细胞DNA中很大部分是不转录的,大部分真核细胞的基因中间还存在不被翻译的内含子。 真核生物能够有序地根据生长发育阶段的需要进行DNA片段重排,还能在需要时增加细胞内某些基因的拷贝数。 基因转录的调节区相对较大,它们可能远离启动子达几百个甚至上千个碱基对,这些调节区一般通过改变整个所控制基因5上游区DNA构型来影响它与RNA聚合酶的结合能力。 真核生物的RNA在细胞核中合成,只有经转运穿过核膜,到达细胞质后,才能被翻译成蛋白质,原核生物中不存在这样严格的空间间隔。 许多真核生物的基因只有经过复杂的成熟和剪接过程,才能顺利地翻译成蛋白质。2、基因家族(gene family)n 基因家族:是真核生物基因组中来源相同,结构相似,功能相关的一组基因。n 在染色体上的分布形式: 一些基因家族成员在特殊的染色体区域成簇存在(基因簇);另一些基因家族成员分布广泛甚至可在不同的染色体上(散布的基因家族)。2.1 简单多基因家族(串联方式前后相连)n 简单多基因家族中的基因一般以串联方式前后相连。在大肠杆菌中,16S,23S和5S rRNA基因联合成一个转录单位,各种rRNA分子都是从这个转录单位上剪切下来的。(图P283)2.2 复杂多基因家族(组蛋白基因家族)2.3 发育调控的复杂多基因家族 (血红蛋白家族) 所有动物血红蛋白基因的基本结构都相同有功能的血红蛋白基因的基本结构:三个外显子被两个内含子隔开在每个基因家族中,基因的排列顺序就是它们在发育阶段的表达顺序。(P285 图8-7)3.1 真核基因的断裂结构断裂基因基因的编码序列在DNA分子上是不连续的,被非编码序列所隔开,其中编码的序列称为外显子,非编码序列称内含子。外显子(Exon) :真核细胞基因DNA中的编码序列,这些序列被转录成RNA并进而翻译为蛋白质。内含子(Intron) :真核细胞基因DNA中的间插序列,这些序列被转录成RNA,但随即被剪除而不翻译。 外显子与内含子的连接区指外显子和内含子的交界(边界序列),它的重要特征:n 连接区序列很短,高度保守,是RNA剪接的信号序列 5GTAG 3 (GT-AG法则) 表明几乎所有高等真核生物基因存在共同的剪接机制。外显子与内含子的可变调控n 组成型剪接:一个基因的转录产物通过剪接只能产生一种成熟的mRNA。n 选择性剪接:同一基因的转录产物由于不同的剪接方式形成不同mRNA。 三、真核生物DNA水平上的基因表达调控1、染色质结构对转录的影响2、基因扩增3、基因重排与变换免疫球蛋白4、DNA甲基化与基因活性的调控1、染色质结构对转录的影响n 在细胞分裂间期的细胞核中,染色质的形态不均匀。根据其形态及染色特点可分为常染色质和异染色质两种类型。n 常染色质:折叠疏松、凝缩程度低,处于伸展状态,碱性染料染色时着色浅。n 异染色质:折叠压缩程度高,处于凝集状态,经碱性染料染色着色深。n 真核基因的活跃转录是在常染色质上进行。 转录发生之前,染色质常常在特定的区域被解旋或松弛,形成自由DNA并发生DNA局部结构的变化(活性染色质),导致结构基因暴露,促进转录因子与启动区DNA的结合,从而使基因转录。v 乙酰化降低核小体的稳定性,干扰染色质的凝集,使染色质对DNaseI和核酸酶的敏感性增强,是活性染色体的标志。v 乙酰化修饰对DNA影响一般在启动子上下游1kb的区域内。灯刷染色体上的环形结构可能与基因的活性转录有关。(1)发现于鱼类、两栖类和爬行类卵细胞减数分裂的双线期,由于染色体主轴两侧有侧环,状如灯刷,故名灯刷染色体。(2)由两条同源染色体组成,在交叉处结合,每条同源染色体含2条染色单体。(3)轴上有一些染色粒,代表染色质紧密螺旋化的部位。同时两条染色单体向两边伸出许多侧环,侧环是RNA活跃转录的区域。2、基因扩增 定义:是某基因的拷贝数专一性大量增加的现象,可短时间内产生大量基因产物满足生长需要。基因活性调控的一种方式。实例:非洲爪蟾卵母细胞中的rRNA基因在卵母细胞中原有约500个拷贝,减数分裂粗线期复制开始,到双线期达200万个,扩增4000倍,可用于合成1012个核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。3、基因重排n 定义:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。n 实例:免疫球蛋白基因基因丢失:在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。其特点为不可逆性。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。在一些肿瘤的发生中,因为一些正常基因片断的丢失,导致原癌基因的异常活化,引发恶性细胞过度增生。4、DNA甲基化与基因活性的调控(1) DNA甲基化是最早发现的修饰途径之一,可能存在于所有高等生物中。 DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化与表达。 机理: DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率,对基因表达产生抑制作用。(2)DNA的甲基化能提高该位点的突变频率,因而可作为诱变剂或致癌因子调节基因表达。(3)X染色体上DNA的高度甲基化可引起X染色体的失活。有两类甲基化酶:日常型甲基转移酶从头合成型甲基转移酶甲基化会使B-DNA向Z-DNA转变,降低转录活性n CpG二核苷酸序列通常成串出现并零散地分布于基因组中,此段序列被称为CpG岛。n 哺乳类基因组中约存在4万个CpG 岛,它们大多位于结构基因启动子的核心序列和转录起始点,其中有60%90% 的CpG 被甲基化, CpG 岛在基因表达调控中起重要作用。n 甲基化的CpG 可以通过与甲基化CpG结合蛋白因子MeCP1的结合间接影响转录因子与DNA的结合。基因启动区甲基化密度对基因转录的影响 对弱启动子来说,少量甲基化就能使其完全失去转录活性。当这类启动子被增强时,即使不去甲基化也可以恢复其转录活性。甲基化密度较高时,即使增强后的启动子仍转录活性。Ø 甲基化对转录的抑制强度与CpG结合蛋白结合DNA的能力成正相关。Ø 甲基化CpG的密度和启动子强度之间的平衡决 定了该启动子是否具有转录活性。例:DNA甲基化对X染色体失活的影响X染色体失活是雌性胎生哺乳动物细胞中两条X染色体随机失活一条,以保证与雄性X染色体基因的剂量相同。失活染色体上基因多数处于关闭状态(DNA序列呈高度甲基化)。其中Xist基因的表达是决定X染色体失活的关键因素。Xist基因只在失活的X染色体上表达。1. 真核生物基因调控分类?瞬时调控或称可逆调控(对某底物或激素水平的反应)发育调控或称不可逆调控,决定了真核细胞生长、分化、发育的全部进程。真核基因表达的调控可以在多个水平上进行:DNA水平的调控、转录水平调控、转录后水平调控、翻译水平调控、蛋白质加工水平的调控;2.真核生物主要有几类基因家族? 基因家族:是真核生物基因组中来源相同,结构相似,功能相关的一组基因。 一些基因家族成员在特殊的染色体区域成簇存在(基因簇); 另一些基因家族成员分布广泛甚至可在不同的染色体上(散布的基因家族)。3.真核生物外显子与内含子的连接区有什么特征?n 连接区序列很短,高度保守,是RNA剪接的信号序列 5'GTAG 3'4.外显子与内含子的剪接方式?举例说明选择性剪接?n 组成型剪接:一个基因的转录产物通过剪接只能产生一种成熟的mRNA。n 选择性剪接:同一基因的转录产物由于不同的剪接方式形成不同mRNA。5. DNA甲基化为什么能调控基因表达?(1)DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化与表达。其机理是DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA 的结合效率。(2)DNA的甲基化能提高甲基位点的突变频率,因而可作为诱变剂或致癌因子调节基因表达。(3)X染色体上DNA的高度甲基化可引起X染色体的失活四、 真核基因转录机器的主要成分-顺式作用元件n 真核基因调控主要在转录水平上进行,受大量特定顺式作用元件和反式作用因子调控,大多通过它们之间复杂的相互作用来实现。顺式作用元件定义:影响自身基因表达活性的非编码DNA序列。 例: 启动子、增强子、沉默子等(1)启动子:在DNA分子中,RNA聚合酶能够识别、结合并 导致转录起始的序列。真核基因启动子由核心启动子和上游启动子两个部分组成,是在基因转录起始位点(+1)及其5上游大约100200bp以内的一组具有独立功能的DNA序列,每个元件长度约为720bp,是决定RNA聚合酶II转录起始点和转录频率的关键元件。核心启动子(core promoter):是保证RNA聚合酶II转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游-25-30bp处的TATA盒。核心启动子确定转录起始位点并产生基础水平的转录。上游启动子元件(upstream promoter element,UPE)包括通常位于-70bp附近的CAAT盒(CCAAT)和GC盒(GGGCGG)等,能通过TFIID复合物调节转录起始的频率,提高转录效率。(2)增强子:指能使与它连锁的基因转录频率 明显增加的DNA序列。 增强子特点: 增强效应十分明显,一般能使基因转录频率增加10-200倍。 增强效应与其位置和取向无关,不论增强子以什么方向排列(53或35),甚至和靶基因相距3 kb,或在靶基因下游,均表现出增强效应。大多为重复序列,一般长约50bp,适合与某些蛋白因子结合。其内部常含有一个核心序列:(G)TGGA/TA/TA/T(G),该序列是产生增强效应时所必需的。 增强效应有严密的组织和细胞特异性,说明增强子只有与特定的蛋白质(转录因子)相互作用才能发挥其功能。 没有基因专一性,可以在不同的基因组合上表现增强效应。 许多增强子还受外部信号的调控,如金属硫蛋白的基因启动区上游所带的增强子,就可以对环境中的锌、镉浓度做出反应。(3)沉默子:某些基因含有负性调节元件-沉默子,当其结合特异蛋白因子时,对基因转录起阻遏作用。五、转录水平的调控-反式作用因子反式作用因子:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。 TFD(TATA区)、CTF(CAAT区)、SP1(GC区)、HSF(热激蛋白启动区)反式作用因子的结构(1)DNA结合结构域 反式作用因子结构中用来同顺式作用元件结合的结构区域,主要起结合DNA作用。(2)转录活化结构域 反式作用因子结构中用来同其他蛋白因子结合,参与募集启动子结合蛋白和形成转录起始复合体,控制基因转录活化的结构区域。转录因子的DNA结合域和活化结构域是独立发挥作用的,DNA结合域的功能只是把活化结构域“拴在”起始复合体附近,使之能够发挥活化转录的作用。DNA结合域把活化结构域带到转录起点的附近,而DNA结合域和活化结构域之间的连结区域是具有足够柔性的,这样,不论DNA结合域所结合的具体位点在哪里,都能使活化结构域找到其靶蛋白 (转录因子)。(一)转录因子的DNA结合结构域(1)、螺旋-转折-螺旋(H-T-H)(2)、锌指(Zinc finger region)(3)、亮氨酸“拉链”式二聚体(4)、螺旋-环-螺旋结构(HLH);(5)、同源域蛋白(1)螺旋-转折-螺旋 (H-T-H)结构n 该结构域主要包含两个或以上-螺旋区和螺旋区中间的转折区,主要通过一个靠C端的-螺旋与DNA双螺旋大沟结合。(2) 锌指(zinc finger)定义:保守氨基酸的残基与锌离子结合,使中间的氨基酸残基回折成一种手指状结构,称为锌指。P302图结构:保守序列:Cys-X2-4-Cys-X3-Phe-X5-Leu-X2-His-X3-His;Cys-X2-Cys-X13-Cys-X2-CysCys2/His2锌指,Cys2/Cys2锌指;功能:锌指区负责识别并结合于DNA上特异的目标位点。有两类与DNA结合的蛋白质具有这种结构,即经典的锌指蛋白和类固醇受体。不同蛋白质锌指数目不同。转录因子SP1中的锌指结构每个螺旋与DNA形成两个序列特异性的接触(箭头)类固醇激素受体是以二聚体形式发挥其促进转录作用的。它们的两个锌指的功能不同。第1个锌指的右侧是控制与DNA结合的,第2个锌指的左侧则是控制形成二聚体的能力的。结构特点:蛋白形成的-螺旋结构上每6个氨基酸就有一个亮氨酸残基,这些亮氨酸出现在a-螺旋的一个方向,每两个蛋白组成一个二聚体,使亮氨酸相对排列,形成拉链样结构,在拉链区的氨基端有个约30个残基的碱性区(富含赖氨酸和精氨酸)。此区的作用是与DNA结合,它也形成a-螺旋。 P304(3)、碱性-亮氨酸拉链 (bZIP结构)定义:出现在DNA结合蛋白质和其它蛋白质中的一种结构基元(motif)。当来自同一个或不同多肽链的两个-螺旋的疏水面(常常含有亮氨酸残基)相互作用形成一个圈对圈的二聚体结构时就形成了亮氨酸拉链。 v 早期设想的这些a-螺旋之间的蛋白质蛋白质相互作用的模式是亮氨酸残基的交错插入,因而叫亮氨酸拉链。(如左图)v 现在已知,在两个蛋白质上的亮氨酸残基是肩并肩地排列起来的,并且相互作用的两个a-螺旋是彼此缠绕在一起。(4) 碱性-螺旋-环-螺旋结构(bHLH)v HLH蛋白的共同结构:含40-50个氨基酸残基,其中含两个既亲水又亲脂的a-螺旋, a-螺旋被不同长度的连接区分开。v HLH蛋白借两个螺旋对应面上疏水基团相互作用形成同样亚基或不同亚基构成的二聚体。v HLH蛋白的氨基端应是含有强碱性的区域,它是与DNA结合必须的。 bHLH蛋白只有形成二聚体形式才具足够DNA结合能力。 两个亚基都有碱性区时才能与DNA结合。HLH结构域的作用大概是正确安置这两个(由每个亚基提供一个)碱性区的位置。(5)同源域蛋白:同源域是指编码60个保守氨基酸序列的DNA片段,它广泛存在于真核生物基因组内,同源转换基因与生物有机体的生长、发育和分化密切相关。Ø 同源域蛋白的C端具有类似于螺旋-转折-螺旋结构,所以具有转录调节功能。(二) 转录活化结构域一般是DNA结合结构域以外的30-100氨基酸残基组成,主要包括以下几种特征性结构n 酸性-螺旋结构域n 富含谷氨酰胺结构域n 富含脯氨酸结构域六、真核基因转录调控的主要模式真核基因的表达是一个复杂的过程,细胞作为生命活动的基本单位,通过感知外界环境的变化,作出特定应答,按顺序主要分为三个阶段: 感知外界信息(信息由包膜至核内) 染色质结构的改变,相应转录因子的活化 特定基因的表达过程外界的信号刺激要由细胞外传递到核内,使相应基因作出应答,整个传递过程复杂多变,关键的步骤在于如何使信号顺利通过细胞膜和核膜的阻隔,到达影响基因表达的特定区域,某些特异性活性分子起着承载和传递信号的重要作用。n 信号传导过程:胞外信号传递入细胞,主要采取一种受体、配体相互作用的方式受体(receptor):是细胞膜上或细胞内能特异识别生物活性分子并与之结合, 起生物学效应的特殊蛋白质(激酶),个别是糖脂。配体(ligand):能与受体呈特异性结合的生物活性分子。细胞间信息物质就是一类最常见的配体。除此以外,某些药物、维生素和毒物也可作为配体而发挥生物学作用。受体分子活化细胞功能的途径主要有两条: 配体与细胞表面受体结合,通过G蛋白介异的效应系统产生介质,活化丝氨酸/苏氨酸或酪氨酸激酶,从而传递信号。 受体本身或受体结合蛋白具有内源酪氨酸激酶活性,胞内信号通过酪氨酸激酶途径得到传递。Ø G蛋白是一类和GTP或GDP相结合、位于细胞膜内表面的外周蛋白,由三个亚基组成,亚基(45kD)亚基(35kD)和亚基(7kD)。Ø G蛋白有两种构象,一种以三 聚体存在并与GDP结合,为非活化型;另一种构象是亚基与GTP结合并导致二聚体的脱落,此型为活化型。 蛋白激酶的种类与功能Ø 细胞受刺激以后,通过蛋白质磷酸化及一系列级联放大过程将胞外信号转化为细胞内信号,从而引起广泛的生理反应。Ø 根据底物蛋白质被磷酸化的氨基酸残基的种类可分为:第一类为丝氨酸/苏氨酸型。第二类为酪氨酸型。被磷酸化的是底物的酪氨酸残基。第三类是组氨酸型。蛋白质磷酸化在细胞信号转导中的作用(1)介导胞外信号时具有专一应答特点。 (2)能对外界刺激做出更迅速的反应。(3)对外界信号具有级联放大作用。(4)保证了细胞对外界信号的持续反应。根据是否有调节物来分又可分成两大类: 1.信使依赖型蛋白质激酶:包括调节因子(胞内第二信使)依赖型蛋白激酶及激素(生长因子)依赖型激酶。2.非信使依赖型蛋白激酶。第一信使(细胞间信息物质) :是由细胞分泌的调节靶细胞生命活动的化学物质的统称。如生长因子、细胞因子、胰岛素等第二信使:在细胞内传递信息的小分子物质,如:Ca2+、 cAMP、 cGMP、 IP3(磷脂酰肌醇三磷酸)、DAG(二酰基甘油)等。 信使依赖型蛋白激酶非信使依赖型蛋白激酶1.转录调控因子中主要有哪些DNA识别结合域? (1)螺旋-转折-螺旋(H-T-H)(2)锌指(3)碱性-亮氨酸“拉链”式二聚体(4)碱性-螺旋-环-螺旋结构(5)同源域蛋白2. 转录调控因子中主要有那两类锌指?定义:保守氨基酸的残基与锌离子结合,使中间的氨基酸残基回折成一种手指状结构,称为锌指。结构:保守序列:Cys-X2-4-Cys-X3-Phe-X5-Leu-X2-His-X3-His;Cys-X2-Cys-X13-Cys-X2-CysCys2/His2锌指,Cys2/Cys2锌指;功能:锌指区负责识别并结合于DNA上特异的目标位点。3.真核细胞中有哪些主要跨膜信号传导途径?4.根据底物蛋白质被磷酸化的氨基酸残基的不同,可把蛋白激酶分为哪几种类型?根据是否有调节物又可分为哪几类?1.信使依赖型2.非信使依赖型受体分子活化激酶的途径蛋白激酶是信号传递的载体,不同激酶的活 化具有不同的途径:受体偶联G蛋白途径蛋白激酶受体途径通过这两种途径胞外信息被传递入胞内,活化相应的蛋白激酶,激活特定转录因子,发挥转录调控作用。偶联G蛋白途径(依赖于胞内信使)蛋白激酶A(PKA): A激酶,能把ATP上的末端磷酸基团加到某个特定蛋白质的丝氨酸或苏氨酸残基上。 蛋白激酶C(PKC): C激酶,能磷酸化丝氨酸和苏氨酸。蛋白激酶受体途径:酪氨酸蛋白激酶(PTK)1、受cAMP水平调控的A激酶(PKA)n 属于受体偶联G蛋白途径,第二信使是cAMPn 结构特点:非活性PKA由4个亚基组成,2个为调节亚基,2个为催化亚基,调节亚基与cAMP结合,使催化亚基释放活化(II)对基因表达的调节作用cAMP应答元件(CRE):在基因的转录调控区中存在的类顺式作用元件,它可与其结合蛋白(CREB)相互作用而调节此基因的转录 。高浓度cAMP-PKA被激活-催化亚基入核内-CREB磷酸化-CREB与CRE结合调控基因转录2、 C激酶(PKC)和PIP2、IP3和DAGn 属于受体偶联G蛋白途径,第二信使是Ca2+和二酰基甘油(DAG),PKC包含一个催化结构域和一个调节结构域,主要磷酸化丝、苏氨酸。n 磷脂酰肌醇-4,5-二磷酸(PIP2 )分解为肌醇-1,4,5三磷酸(IP3)和DAG。n 由于IP3所引起的细胞质Ca2+浓度升高,使PKC移位到细胞膜内侧与DAG 作用。DAG提高PKC对Ca2+的亲和力,同时解除PKC调节区的抑制3、CaM激酶及MAP激酶n 钙调蛋白(CaM)为钙结合蛋白,是细胞中重要的调节蛋白。CaM是一条多肽链组成。n CaM有4个Ca2+结合位点,当胞浆的Ca2+浓度高时,Ca2+与CaM结合,其构象发生改变而激活为CaM激酶 。n CaM激酶的底物谱非常广,可以磷酸化许多蛋白质(腺苷酸环化酶、磷酸二酯酶 )的丝氨酸和(或)苏氨酸残基,使之激活或失活。 n MAP激酶(ERKS)活性受许多外源细胞生长因子、分化因子的诱导,也受到酪氨酸蛋白激酶及G蛋白受体系统的调控。4、 酪氨酸蛋白激酶(PTK)途径以激酶被磷酸化位点是酪氨酸为特点, 按结构可分为两类:n 受体酪氨酸激酶(RPTK):跨膜蛋白,表皮生长因子(EGF)、胰岛素生长因子(IGF)等细胞因子的受体都属于这一类,由胞外结合配体结构域 、跨膜区和胞内激酶结构域组成。n 非受体酪氨酸激酶:有与受体酪氨酸激酶同源的激酶结构域,包括底物酶JAK和某些原癌基因( src、yes、berabl等)编码的PTK。 n 受体酪氨酸激酶的胞外区是结合配体结构域,胞内段是酪氨酸蛋白激酶的催化部位。n 配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。n 配体(如EGF)在胞外与受体结合并引起构象变化,导致受体二聚化形成同源或异源二聚体,在二聚体内彼此相互磷酸化胞内酪氨酸残基,激活受体本身的酪氨酸蛋白激酶活性。胞质非受体酪氨酸激酶种类较多,以Src家族为例n Src家族蛋白主要包含SH1、SH2和SH3三个结构区。n SH1:激酶功能区n SH2:与带有磷酸化酪氨酸的蛋白质结合n SH3:使Src蛋白定位于包膜内侧或与细胞骨架相互作用(二)激素及其影响 P322n 类固醇激素(如雌激素、糖皮质激素等)及代谢性激素(如胰岛素)可通过启始转录来调控基因表达。n 激素+细胞质受体-复合物(三维结构改变)-复合物进入细胞核-与DNA特定区域结合-基因转录的起始或关闭激素及其胞内受体介导的基因表达调控模式固醇类激素受体蛋白分子:DNA结合区(保守性极高)、转录激活区(保守性小)、激素结合位点。(三)热激蛋白诱导的基因表达应答元件(response element): 能与某个专一蛋白因子结合,从而控制基因特异表达的DNA上游序列。热休克蛋白n 许多生物在最适温度范围以上,能受热诱导合成一系列热休克蛋白。n 受热后,果蝇细胞内热休克蛋白(Hsp70 )的mRNA水平提高1000倍,就是因为热激因子(HSF)与Hsp70基因TATA区上游60bp处的HSE相结合,诱发转录起始。 HSF(heat shock factor):热激因子 Hsp70(heat shock protein):热休克蛋白1.HSF是如何调控Hsp70基因表达活性的? 2.真核基因转录调控的主要模式有? 蛋白质磷酸化、信号转导及基因表达激素及其影响热激蛋白诱导的基因表达金属硫蛋白基因的多重调控4.名词解释:n 基因家族 是真核生物基因组中来源相同,结构相似,功能相关的一组基因。n 基因扩增 是某基因的拷贝数专一性大量增加的现象,可短时间内产生大量基因产物满足生长需要。基因活性调控的一种方式。n 基因重排 将一个基因从远离启动子的地方移到较近的位点从而启动转录,被称为基因重排。n 灯刷染色体 发现于鱼类、两栖类和爬行类卵细胞减数分裂的双线期,由于染色体主轴两侧有侧环,状如灯刷,故名灯刷染色体。n 锌指 保守氨基酸的残基与锌离子结合,使中间的氨基酸残基回折成一种手指状结构,称为锌指。

    注意事项

    本文(第八章真核基因的表达调控.doc)为本站会员(本田雅阁)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开