欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    控制系统的状态空间分析与综合.DOC

    • 资源ID:6060638       资源大小:2.34MB        全文页数:25页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    控制系统的状态空间分析与综合.DOC

    第8章 控制系统的状态空间分析与综合第17章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入单输出线性定常系统,其缺点是只能反映输入输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入多输出系统、非线性系统、时变系统等复杂系统的控制问题。随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法控制u执行器被控对象传感器控制器控制输入观测y被控过程x反馈控制图8-1 典型控制系统方块图 典型控制系统如图8-1所示,由被控对象、传感器、执行器和控制器组成。被控过程(见图8-2)具有若干输入端和输出端。数学描述通常有两种基本方法:一种是输入、输出描述(外部描述),它将系统看成为“黑箱”,只是反映输入与输出间的关系,而不去表征系统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量和输入变量间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。图8-2 被控过程8.1.2 状态空间描述常用的基本概念1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。2.状态、状态变量和状态向量能完整描述和惟一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态,其中的各个变量称为状态变量。当状态表示成以各状态变量为分量组成的向量时,称为状态向量。系统的状态由时的初始状态 () 及的输入惟一确定。对阶微分方程描述的系统,当个初始条件及的输入给定时,可惟一确定方程的解,故这n个独立变量可选作状态变量。状态对于确定系统的行为既是必要的,也是充分的。n阶系统状态变量所含独立变量的个数为n,当变量个数小于n时,便不能完全确定系统的状态,而当变量个数大于n时,则存在多余的变量,这些多余的变量就不是独立变量。判断变量是否独立的基本方法是看它们之间是否存在代数约束。状态变量的选取并不惟一,一个系统通常有多种不同的选取方法。但应尽量选取能测量的物理量或独立贮能元件的贮能变量作为状态变量,以便实现系统设计。在机械系统中,常选取位移和速度作为变量;在R-L-C网络中,常选电感电流和电容电压作为状态变量;在由传递函数绘制的方块图中,常取积分器的输出作为状态变量。3.状态空间以状态向量的n个分量作为坐标轴所组成的n维空间称为状态空间。4.状态轨迹系统在某个时刻的状态,可以看作是状态空间的一个点。随着时间的推移,系统状态不断变化,便在状态空间中描绘出一条轨迹,该轨迹称为状态轨迹。5.状态方程描述系统状态变量与输入变量之间关系的一阶向量微分方程或差分方程称为系统的状态方程,它不含输入的微积分项。状态方程表征了系统由输入所引起的状态变化,一般情况下,状态方程既是非线性的,又是时变的,它可以表示为 (8-1)6.输出方程描述系统输出变量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,当输出由传感器得到时,又称为观测方程。输出方程的一般形式为 (8-2)输出方程表征了系统状态和输入的变化所引起的系统输出变化。7.动态方程状态方程与输出方程的组合称为动态方程,又称为状态空间表达式,其一般形式为 (8-3a)或离散形式 (8-3b)8.线性系统:线性系统的状态方程是一阶向量线性微分方程或差分方程,输出方程是向量代数方程。线性连续时间系统动态方程的一般形式为 (8-4)设状态x、输入u、输出y的维数分别为,称矩阵A(t)为系统矩阵或状态矩阵,称矩阵为控制矩阵或输入矩阵,称矩阵C(t)为输出矩阵或观测矩阵,称矩阵D(t)为前馈矩阵或输入输出矩阵。9.线性定常系统线性系统的A,B,C,D中的各元素全部是常数。即 (8-5a)对应的离散形式为 (8-5b) 为书写方便,常把系统(8-5a)和系统(8-5b)分别简记为S(A,B,C,D)和S(G,H,C,D)。10.线性系统的结构图 线性系统的动态方程常用结构图表示。图8-3为连续系统的结构图;图8-4为离散系统的结构图。 图中,I为()单位矩阵,s是拉普拉斯算子,z为单位延时算子。 图8-3线性连续时间系统结构图 图8-4 线性离散时间系统结构图由于状态变量的选取不是惟一的,因此状态方程、输出方程、动态方程也都不是惟一的。但是,用独立变量所描述的系统的维数应该是惟一的,与状态变量的选取方法无关。动态方程对于系统的描述是充分的和完整的,即系统中的任何一个变量均可用状态方程和输出方程来描述。状态方程着眼于系统动态演变过程的描述,反映状态变量间的微积分约束;而输出方程则反映系统中变量之间的静态关系,着眼于建立系统中输出变量与状态变量间的代数约束,这也是非独立变量不能作为状态变量的原因之一。动态方程描述的优点是便于采用向量、矩阵记号简化数学描述,便于在计算机上求解,便于考虑初始条件,便于了解系统内部状态的变化特征,便于应用现代设计方法实现最优控制和最优估计,适用于时变、非线性、连续、离散、随机、多变量等各类控制系统。 (a) (b)图8-5 电路的独立变量例8-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是输入电压和输入电流,y为输出电压,i=1,2,3,为电容器电压或电感器电流。解 并非所有电路中的电容器电压和电感器电流都是独立变量。对图8-5(a)所示电路,不失一般性,假定电容器初始电压值均为0,有 因此,只有一个变量是独立的,状态变量只能选其中一个,即用其中的任意一个变量作为状态变量便可以确定该电路的行为。实际上,三个串并联的电容可以等效为一个电容。对图8-5(b)所示电路,x1 = x2,因此两者相关,电路只有两个变量是独立的,即(x1和x3)或(x2和x3),可以任用其中一组变量如(x2,x3)作为状态变量。8.1.3 系统的传递函数矩阵 设初始条件为零,对线性定常系统的动态方程进行拉氏变换,可以得到 (8-6)系统的传递函数矩阵(简称传递矩阵)定义为 (8-7)例8-2 已知系统动态方程为试求系统的传递函数矩阵。解 已知 故8.1.4 线性定常系统动态方程的建立1.根据系统物理模型建立动态方程例8-3 试列写如图8-6所示的R-L-C电路方程,选择几组状态变量并建立相应的动态方程,并就所选状态变量间的关系进行讨论。图8-6 R-L-C 电路 解 有明确物理意义的常用变量主要有:电流、电阻器电压、电容器的电压与电荷、电感器的电压与磁通。 根据回路电压定律 电路输出量为 1) 设状态变量为电感器电流和电容器电压,即,则状态方程为 输出方程为 其向量-矩阵形式为 简记为 式中, 2) 设状态变量为电容器电流和电荷,即 ,则有3) 设状态变量 ,其中,无明确意义的物理量,可以推出其向量-矩阵形式为图8-7 双输入三输出机械位移系统可见对同一系统,状态变量的选择不具有惟一性,动态方程也不是惟一的。 例8-4 由质量块、弹簧、阻尼器组成的双输入三输出机械位移系统如图8-7所示,具有力F和阻尼器气缸速度V两种外作用,输出量为质量块的位移,速度和加速度。试列写该系统的动态方程。分别为质量、弹簧刚度、阻尼系数;x为质量块位移。 解 根据牛顿力学可知,系统所受外力F与惯性力m、阻尼力f(V)和弹簧恢复力构成平衡关系,系统微分方程如下:这是一个二阶系统,若已知质量块的初始位移和初始速度,系统在输入作用下的解便可惟一确定,故选择质量块的位移和速度作为状态变量。设。由题意知系统有三个输出量,设。于是由系统微分方程可以导出系统状态方程其向量-矩阵形式为图8-8 双质量块机械系统 例8-5 对于图8-8所示的机械系统,若不考虑重力对系统的作用,试列写该系统以拉力为输入,以质量块m1和m2的位移y1和y2为输出的动态方程。 解 根据牛顿定律,系统微分方程为式中,为弹簧刚度,为阻尼系数。该系统有4个独立的储能元件,即弹簧和质量,故应选择其中4个相互独立的变量作为系统的状态变量,现选择 ,经过整理,可得到系统的动态方程2.由高阶微分方程建立动态方程(1) 微分方程不含输入量的导数项 (8-8) 选n个状态变量为 ,有 (8-9)得到动态方程 (8-10)式中 , 按(8-10)式绘制的结构图称为状态变量图。如图8-9所示,每个积分器的输出都是对应的状态变量,状态方程由各积分器的输入-输出关系确定。图8-9 系统的状态变量图 (2) 微分方程输入量中含有导数项 (8-11)一般输入导数项的次数小于或等于系统的阶数n。为了避免在状态方程中出现输入导数项,可按如下规则选择一组状态变量, (8-12) 其展开式为 (8-13)式中,是n个待定常数。由式(8-13)的第一个方程可得输出方程并由余下的方程得到(n)个状态方程对(8-13)中的最后一个方程求导数并考虑式(8-11),有由式(8-13),将均以及u的各阶导数表示,经整理可得令上式中u的各阶导数的系数为零,可确定各h的值,即 记 故 则系统的动态方程为 (8-14)式中 若输入量中仅含次导数,且,可将高于次导数项的系数置0,仍可应用上述公式。 3.由系统传递函数建立动态方程高阶微分方程(8-11)式对应的单输入单输出系统传递函数为 (8-15)应用综合除法有 (8-16)式中,是联系输入、输出的前馈系数,当G(s)的分母阶数大于分子阶数时,是严格有理真分式,其分子各次项的系数分别为 (8-17)图8-10 串联分解下面介绍由 导出几种标准型动态方程的方法。(1)串联分解 如图8-10,取中间变量z,将串联分解为两部分,有 选取状态变量 则状态方程为 输出方程为 其向量-矩阵形式为 (8-18)式中, 具有以上形状时,阵称为友矩阵,相应的状态方程称为可控标准型。当 时,均不变,若选取,则可以构造出新的状态方程。式中 请注意,的形状特征,对应的动态方程称为可观测标准型。关于可控和可观测的概念,在第8.4节还要进行详细的论述。可控标准型与可观测标准型之间存在以下对偶关系: (8-19)式中,下标c表示可控标准型;o表示可观测标准型;T为转置符号。请读者从传递函数矩阵(8-7)出发自行证明:可控标准型和可观测标准型是同一传递函数的不同实现。可控标准型和可观测标准型的状态变量图如图8-11和图8-12所示。图8-11 可控标准型状态变量图 图8-12 可观测标准型状态变量图例8-6 设二阶系统微分方程为,试列写可控标准型、可观测标准型动态方程,并分别确定状态变量与输入,输出量的关系。 解 系统的传递函数为 于是,可控标准型动态方程的各矩阵为 由G(s)串联分解并引入中间变量z有 对y求导并考虑上述关系式,则有 令 可导出状态变量与输入,输出量的关系 可观测标准型动态方程中各矩阵为 状态变量与输入,输出量的关系为(a)可控标准型实现 (b)可观测标准型实现图8-13 例8-6的状态变量图 图8-13分别给出了该系统的可控标准型与可观测标准型的状态变量图。(2)只含单实极点时的情况:当 只含单实极点时,动态方程除了可化为可控标准型或可观测标准型以外,还可化为对角型动态方程,其A矩阵是一个对角阵。设D(s)可分解为 D(s)=式中,为系统的单实极点,则传递函数可展成部分分式之和,即=而 ,为 在极点处的留数,且有Y(s)= u(s)若令状态变量 其反变换结果为 展开得 其向量-矩阵形式为=+ y= (8-20)其状态变量如图8-14(a)所示。若令状态变量满足则 进行反变换并展开有 其向量-矩阵形式为 =+u (8-21)其状态变量图如图8-14(b)所示。显然式(8-20)与式(8-21)存在对偶关系。 (a) (b) 图8-14 对角型动态方程状态变量图(3)含重实极点时的情况 当传递函数除含单实极点之外还含有重实极点时,不仅可化为可控标准型或可观测标准型,还可化为约当标准型动态方程,其A阵是一个含约当块的矩阵。设D(s)可分解为D(s)= 式中为三重实极点,为单实极点,则传递函数可展成为下列部分分式之和,即 =其状态变量的选取方法与之含单实极点时相同,可分别得出向量-矩阵形式的动态方程:=+u (8-22) y= x =+u (8-23) y=x 图8-15 约当型动态方程状态变量图其对应的状态变量图如图8-15(a),(b)所示。式(8-22)与式(8-23)也存在对偶关系。4.由差分方程和脉冲传递函数建立动态方程 离散系统的特点是系统中的各个变量只在离散的采样点上有定义,线性离散系统的动态方程可以利用系统的差分方程建立,也可以将线性动态方程离散化得到。在经典控制理论中,离散系统通常用差分方程或脉冲传递函数来描述。单输入-单输出线性定常离散系统差分方程的一般形式为 (8-24)两端取z变换,并整理得脉冲传递函数为 (8-25)式(8-25)与(8-16)在形式上相同,故连续系统动态方程的建立方法可用于离散系统。利用z变换关系和,可以得到动态方程为 (8-26)简记 (8-27) 5.由传递函数矩阵建动态方程 给定一传递函数矩阵G(s),若有一系统S(A,B,C,D)能使 (8-28)成立,则称系统S(A,B,C,D)是G(s)的一个实现。传递函数矩阵的实现问题就是由传递函数矩阵寻求对应的动态方程的问题,由于实现问题比较复杂,这里的讨论仅限于单输入-多输出和多输入-单输出系统。1) 单输入-多输出系统传递矩阵的实现:设单输入q维输出系统如图8-16所示,系统可看作由q个独立子系统组成,其传递矩阵为图8-16 单输入多输出系统结构图 图8-17 多输入单输出系统结构图 (8-29)式中,d为常数向量;,为不可约分的严格有理真分式(即分母阶次大于分子阶次)函数。通常 , , 的特性并不相同,具有不同的分母,设最小公分母为 (8-30)的一般形式为 = (8-31)引入中间变量Z对作串联分解 若将A矩阵写为友矩阵,便可得到可控标准型实现的状态方程,即+ (8-32)每个子系统的输出方程均表示为z及其各阶导数的线性组合,即 其向量-矩阵形式为=+ (8-33)可以看到,单输入,q维输出系统的输入矩阵为q维列向量,输出矩阵为(qn)矩阵,故不存在其对偶形式,即不存在可观测标准型实现。2) 多输入-单输出系统传递矩阵的实现:设p维输入,单输出系统的结构图如图8-17 所示,系统由p个独立子系统组成,系统输出由子系统输出合成为 (8-34)式中 同理设, , 的最小公分母为D(s),则若将A阵写成友矩阵的转置形式,便可得到可观测标准型实现的动态方程 (8-35)可见,p输入、单输入系统的输入矩阵为(np)矩阵,输出矩阵为一维行向量,故不存在其对偶形式,即不存在可控标准型实现。 例8-7 已知单输入-多输出系统的传递函数矩阵为 ,求其传递矩阵的可控标准型实现及对角型实现。 解 由于系统是单输入,多输出的,故输入矩阵只有一列,输出矩阵有两行。将化为严格有理真分式各元素的最小公分母D(s)为 故 则可控标准型动态方程为 由可确定系统极点为-1,-2,它们构成对角形状态矩阵的元素。鉴于输入矩阵只有一列,这里不能选取极点的留数来构成输入矩阵,而只能取元素全为1的输入矩阵。于是,对角型实现的状态方程为 其输出矩阵由极点对应的留数组成,在-1,-2处的留数分别为 故其输出方程为

    注意事项

    本文(控制系统的状态空间分析与综合.DOC)为本站会员(苏美尔)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开