欢迎来到三一文库! | 帮助中心 三一文库31doc.com 一个上传文档投稿赚钱的网站
三一文库
全部分类
  • 研究报告>
  • 工作总结>
  • 合同范本>
  • 心得体会>
  • 工作报告>
  • 党团相关>
  • 幼儿/小学教育>
  • 高等教育>
  • 经济/贸易/财会>
  • 建筑/环境>
  • 金融/证券>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 三一文库 > 资源分类 > DOC文档下载  

    传感器与检测技术指导书.doc

    • 资源ID:8955200       资源大小:243KB        全文页数:22页
    • 资源格式: DOC        下载积分:6
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 QQ登录   微博登录  
    二维码
    微信扫一扫登录
    下载资源需要6
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    传感器与检测技术指导书.doc

    传感器与检测技术实验指导书 学生姓名: 学 号: 所在班级: 黑龙江八一农垦大学信息技术学院实验一 金属箔式应变片及电桥性能实验一 金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: RRK式中RR为电阻丝电阻相对变化,K为应变灵敏系数,=l/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化 、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压 Uo1= EK/4。三、需用器件与单元:应变式传感器实验模板、应变式传感器电子秤、砝码、数显表、15V电源、4V电源、万用表(自备)。四、实验步骤:1、 根据图(11)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1R2R3R4350,加热丝阻值为50左右 图11 应变式传感器安装示意图2、 接入模板电源15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。关闭主控箱电源(注意:当Rw3、Rw4的位置一旦确定,就不能改变。一直到做完实验三为止)。3、 将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器RW1,接上桥路电源4V(从主控台引入)如图12所示。检查接线无误后,合上主控台电源开关。调节RW1,使数显表显示为零。图12应变式传感器单臂电桥实验接线图4、 在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验结果填入表11,关闭电源。重量(g)电压(mv)5、 根据表11计算系统灵敏度SU/W(U输出电压变化量,W重量变化量)和非线性误差f1=m/yF.S 100式中m为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为200g(或500g)。五、思考题: 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。 二 金属箔式应变片半桥性能实验一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压UO2EK2。三、 需用器件与单元:同实验一。四、 实验步骤:1、 传感器安装同实验一。做实验(一)的步骤2,实验模板差动放大器调零。2、 根据图13接线。R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。接入桥路电源4V,调节电桥调零电位器RW1进行桥路调零,实验步骤3、4同实验一中4、5的步骤,将实验数据记入表12,计算灵敏度S2UW,非线性误差f2。若实验时无数值显示说明R2与R1为相同受力状态应变片,应更换另一个应变片。图13应变式传感器半桥实验接线图表12半桥测量时,输出电压与加负载重量值重量电压五、 思考题:1、 半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。2、 桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。三 金属箔式应变片全桥性能实验一、实验目的:了解全桥测量电路的优点。二、基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1R2R3R4,其变化值R1R2R3R4时,其桥路输出电压U03KE。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。三、需用器件和单元:同实验一四、实验步骤:1、 传感器安装同实验一。2、 根据图14接线,实验方法与实验二相同。将实验结果填入表13;进行灵敏度和非线性误差计算。14全桥性能实验接线图表13全桥输出电压与加负载重量值重量电压五、思考题:1、 全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1R3,R2R4,而R1R2时,是否可以组成全桥:(1)可以(2)不可以。2、 某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。FFR1R3R2R1R2R3R4R4FF图15应变式传感器受拉时传感器圆周面展开图实验二 霍尔式传感器的特性实验一 直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。二、基本原理:根据霍尔效应,霍尔电势UHKHIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源、测微头、数显单元。四、实验步骤:1、将霍尔传感器按图21安装。霍尔传感器与实验模板的连接按图22进行。1、3为电源4V,2、4为输出。2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW1使数显表指示为零。图21 霍尔传感器安装示意图 1、图22霍尔传感器位移直流激励实验接线图1、 微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表21。表21X(mm)V(mv)作出VX曲线,计算不同线性范围时的灵敏度和非线性误差。一、 考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?二 交流激励时霍尔式传感器的位移实验一、 实验目的:了解交流激励时霍尔式传感器的特性。二、 基本原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。三、 需用器件与单元:在实验十六基础上加相敏检波、移相、滤波模板、双线示波器。四、 实验步骤:1、 传感器安装同实验十六,实验模板上连线见图23。图23交流激励时霍尔传感器位移实验接线图2、 调节音频振动器频率和幅度旋钮,从Lv输出,用示波器测量使电压输出频率为1KHz,电压峰峰值为接上交流电源,激励电压从音频输出端LV输出频率1KHZ,幅值为4V峰峰值(注意电压过大会烧坏霍尔元件)。3、 调节测微头使霍尔传感器处于磁钢中点,先用示波器观察使霍尔元件不等位电势为最小,然后从数显表上观察,调节电位器RW1、RW2使显示为零。4、 调节测微头使霍尔传感器产生一个较大位移,利用示波器观察相敏检波器输出,旋转移相单元电位器RW和相敏检波电位器RW,使示波器显示全波整流波形,且数显表显示相对值。5、 使数显表显示为零,然后旋动测微头记下每转动0.2mm时表头读数,填入表22。表22交流激励时输出电压和位移数据X(mm)V(mv)6、 根据表22作出VX曲线,计算不同量程时的非线性误差。五、 思考题:利用霍尔元件测量位移和振动时,使用上有何限制?三 霍尔测速实验一、 实验目的:了解霍尔转速传感器的应用。二、 基本原理:利用霍尔效应表达式:UHKHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。三、 需用器件与单元:霍尔转速传感器、直流源5V、转动源224V、转动源单元、数显单元的转速显示部分。四、 实验步骤:1、 根据图34,将霍尔转速传感器装于传感器支架上,探头对准反射面内的磁钢。图34霍尔、光电、磁电转速传感顺安装示意图2、 将5V直流源加于霍尔转速传感器的电源端(1号接线端)。3、 将霍尔转速传感器输出端(2号接线端)插入数显单元Fin端,3号接线端接地。4、 将转速调节中的2V24V转速电源接入三源板的转动电源插孔中。5、 将数显单元上的开关拨到转速档。6、 调节转速调节电压使转动速度变化。观察数显表转速显示的变化。五、 思考题:1、 利用霍尔元件测转速,在测量上有否限制?2、 本实验装置上用了十二只磁钢,能否用一只磁钢?实验三 压电式传感器实验一 压电式传感器测振动实验一、 实验目的:了解压电传感器的测量振动的原理和方法。二、 基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、 需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。四、 实验步骤:1、 压电传感器已装在振动台面上。2、 将低频振荡器信号接入到台面三源板振动源的激励源插孔。图31压电式传感器性能实验接线图3、 将压电传感器输出两端插入到压电传感器实验模板两输入端,见图51,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。4、 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。5、 改变低频振荡器的频率,观察输出波形变化。二 磁电式转速传感器测速实验一、 实验目的:了解磁电式测量转速的原理。二、 基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势: 发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次的变化,通过放大、整形和计数等电路即可以测量转速。三、 需用器件与单元:磁电式传感器、数显单元测转速档、直流源224V。四、 实验步骤:1、 磁电式转速传感器按图34安装传感器端面离转动盘面2mm左右。将磁电式传感器输出端插入数显单元Fin孔。(磁电式传感器两输出插头插入台面板上二个插孔)2、 将显示开关选择转速测量档。3、 将转速电源224V用引线引入到台面板上24V插孔,合上主控箱电开关。使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况。五、 思考题:为什么说磁电式转速传感器不能测很低速的转动,能说明理由吗?实验四 电涡流传感器的特性实验一 电涡流传感器位移实验一、 实验目的:了解电涡流传感器测量位移的工作原理和特性。二、 基本原理:通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。三、 需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。四、 实验步骤:1、 根据图41安装电涡流传感器。图41电涡流传感器安装示意图图42电涡流传感器位移实验接线图2、 观察传感器结构,这是一个平绕线圈。3、 将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。4、 在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。5、 将实验模板输出端Vo与数显单元输入端Vi相接。数显表量程切换开关选择电压20V档。6、 用连结导线从主控台接入15V直流电源接到模板上标有15V的插孔中。7、 使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止。将结果列入表41。表41电涡流传感器位移X与输出电压数据X(mm)V(v)8、 根据表41数据,画出VX曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3 mm及5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。五、 思考题:1、 电涡流传感器的量程与哪些因素有关,如果需要测量5mm的量程应如何设计传感器?2、 用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器。二 被测体材质对电涡流传感器特性影响一、 实验目的:了解不同的被测体材料对电涡流传感器性能的影响。二、 基本原理:涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。三、 需用器件与单元:除与实验二十五相同外,另加铜和铝的被测体圆盘。四、 实验步骤:1、 传感器安装与实验二十五相同。2、 将原铁圆片换成铝和铜圆片。3、 重复实验二十五步骤,进行被测体为铝圆片和铜圆片时的位移特性测试,分别记入表42和表43。表42被测体为铝圆片时的位移为输出电压数据X(mm)V(v)表43被测体为铜圆片时的位移与输出电在数据X(mm)V(v)4、 根据表42和表43分别计算量程为1mm和3mm时的灵敏度和非线性误差(线性度)。5、 分别比较实验二十五和本实验所得结果进行小结。五、 思考题: 当被测体为非金属材料如何利用电涡流传感器进行测试?三 被测体面积大小对电涡流传感器的特性影响实验一、 实验目的:了解电涡流传感器在实际应用中其位移特性与被测体的形状和尺寸有关。二、 基本原理:电涡流传感器在实际应用中,由于被测体的形状,大小不同会导致被测体上涡流效应的不充分,会减弱甚至不产生涡流效应,因此影响电涡流传感器的静态特性,所以在实际测量中,往往必须针对具体的被测体进行静态特性标定。三、 需用器件与单元:直流源、电涡流传感器、测微头、电涡流传感器实验模板、不同形状铝被测体二个、数显单元。四、 实验步骤:1、 传感器安装见图41,与前面静态特性实验相同。2、 按照测静态特性实验要求连接好测量线路。3、 在测微头上分别用三种不同的被测铝圆盘进行电涡位移特性测定,分别记入表45。表65不同尺寸时的被测体特性数据X(mm)被测体1被测体24、 根据表45数据计算目前范围内三种被测体1号、2号的灵敏度、并说明理由。五、 思考题:目前现有一个直径为10mm的电涡流传感器,需对一个轴直径为8mm的振动进行测量?试说明具体的测试方法与操作步骤。实验五 电容式传感器位移实验一、实验目的:了解电容式传感器结构及其特点。二、基本原理:利用平板电容CAd和其它结构的关系式通过相应的结构和测量电路可以选择、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(变)测微小位移(变d)和测量液位(变A)等多种电容传感器。三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。四、实验步骤:1、按图51安装示意图将电容传感器装于电容传感器实验模板上,判别CX1和CX2时,注意动极板接地,接法正确则动极板左右移动时,有正、负输出。不然得调换接头。一般接线:二个静片分别是1号和2号引线,动极板为3号引线。2、将电容传感器电容C1和C2的静片接线分别插入电容传感器实验模板Cx1、Cx2插孔上,动极板连接地插孔(见图51)。图51电容传感器位移实验接线图1、将电容传感器实验模板的输出端Vo1与数显表单元Vi相接(插入主控箱Vi孔),Rw调节到中间位置。2、接入15V电源,旋动测微头推进电容器传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表51。表51 电容传感器位移与输出电压值X(mm) V(mv)3、根据表51数据计算电容传感器的系统灵敏度S和非线性误差f。五、思考题:试设计利用的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验六 差动变压器的性能、特性测量实验一 差动变压器的性能实验一、 实验目的:了解差动变压器的工作原理和特性。二、 基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。三、 需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。四、 实验步骤:1、 根据图61,将差动变压器装在差动变压器实验模板上。图61差动变压器电容传感器安装示意图2、 在模块上按图62接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为45KHz(可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰峰值Vp-p2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。当然不看插孔号码,也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图22接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p2波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。3、 旋动测微头,使示波器第二通道显示的波形峰峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表21,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。图62双踪示波器与差动变压器连结示意图4、 实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表61画出Vop-pX曲线,作出量程为1mm、3mm灵敏度和非线性误差。表(61)差动变压器位移X值与输出电压数据表V(mv) X(mm) 五、 思考题:1、 用差动变压器测量较高频率的振幅,例如1KHZ的振动幅值,可以吗?差动变压器测量频率的上限受什么影响?2、 试分析差动变压器与一般电源变压器的异同?3、 移相器的电路原理图如图67,试分析其工作原理?4、 相敏检波器的电路原理图如图68,试分析其工作原理?二 激励频率对差动变压器特性的影响一、 实验目的:了解初级线圈激励频率对差动变压器输出性能的影响。二、 基本原理:差动变压器的输出电压的有效值可以近似用关系式: 表示,式中LP、RP为初级线圈电感和损耗电阻,Ui、为激励电压和频率,M1、M2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若RP22LP2,则输出电压Uo受频率变动影响较大,且灵敏度较低,只有当2LP2RP2时输出Uo与无关,当然过高会使线圈寄生电容增大,对性能稳定不利。三、 需用器件与单元:与实验六相同。四、 实验步骤:1、 差动变压器安装同实验六。接线图同实验六。2、 选择音频信号输出频率为1KHZ,Vp-p2V。从LV输出,(可用主控箱的数显表频率档显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节Rw1 、Rw2使输出变得更小,3、 用示波器监视第二通道,旋动测微头,向左(或右)旋到离中心位置2.50mm处,有较大的输出。将测试结果记入表62。4、 分别改变激励频率从1KHZ9KHZ,幅值不变,将测试结果记入表62表22不同激励频率时输出电压的关系。F(Hz)1KHz2 KHz3 KHz4 KHz5 KHz6 KHz7 KHz8 KHz9 KHzV0(v)5、作出幅频特性曲线。 21

    注意事项

    本文(传感器与检测技术指导书.doc)为本站会员(rrsccc)主动上传,三一文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    经营许可证编号:宁ICP备18001539号-1

    三一文库
    收起
    展开